65 lines
2.2 KiB
Python
65 lines
2.2 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import os
|
|
import cv2
|
|
|
|
from ppcls.data.preprocess import transform
|
|
from ppcls.utils import logger
|
|
|
|
from .common_dataset import CommonDataset
|
|
|
|
|
|
class MultiLabelDataset(CommonDataset):
|
|
def _load_anno(self, label_ratio=False):
|
|
assert os.path.exists(self._cls_path)
|
|
assert os.path.exists(self._img_root)
|
|
self.images = []
|
|
self.labels = []
|
|
with open(self._cls_path) as fd:
|
|
lines = fd.readlines()
|
|
for l in lines:
|
|
l = l.strip().split("\t")
|
|
self.images.append(os.path.join(self._img_root, l[0]))
|
|
|
|
labels = l[1].split(',')
|
|
labels = [np.int64(i) for i in labels]
|
|
|
|
self.labels.append(labels)
|
|
assert os.path.exists(self.images[-1])
|
|
if label_ratio:
|
|
return np.array(self.labels).mean(0)
|
|
|
|
def __getitem__(self, idx):
|
|
try:
|
|
with open(self.images[idx], 'rb') as f:
|
|
img = f.read()
|
|
if self._transform_ops:
|
|
img = transform(img, self._transform_ops)
|
|
img = img.transpose((2, 0, 1))
|
|
label = np.array(self.labels[idx]).astype("float32")
|
|
if self.label_ratio is not None:
|
|
return (img, [label, self.label_ratio])
|
|
else:
|
|
return (img, label)
|
|
|
|
except Exception as ex:
|
|
logger.error("Exception occured when parse line: {} with msg: {}".
|
|
format(self.images[idx], ex))
|
|
rnd_idx = np.random.randint(self.__len__())
|
|
return self.__getitem__(rnd_idx)
|