PaddleClas/docs/zh_CN/models/PP-HGNet.md

388 lines
18 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# PP-HGNet 系列
---
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型细节](#1.2)
- [1.3 实验结果](#1.3)
- [2. 模型快速体验](#2)
- [2.1 安装 paddleclas](#2.1)
- [2.2 预测](#2.2)
- [3. 模型训练、评估和预测](#3)
- [3.1 环境配置](#3.1)
- [3.2 数据准备](#3.2)
- [3.3 模型训练](#3.3)
- [3.4 模型评估](#3.4)
- [3.5 模型预测](#3.5)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.1.1 基于训练得到的权重导出 inference 模型](#4.1.1)
- [4.1.2 直接下载 inference 模型](#4.1.2)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.2.1 预测单张图像](#4.2.1)
- [4.2.2 基于文件夹的批量预测](#4.2.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
PP-HGNet(High Performance GPU Net) 是百度飞桨视觉团队自研的更适用于 GPU 平台的高性能骨干网络,该网络在 VOVNet 的基础上使用了可学习的下采样层LDS Layer融合了 ResNet_vd、PPHGNet 等模型的优点,该模型在 GPU 平台上与其他 SOTA 模型在相同的速度下有着更高的精度。在同等速度下,该模型高于 ResNet34-D 模型 3.8 个百分点,高于 ResNet50-D 模型 2.4 个百分点,在使用百度自研 SSLD 蒸馏策略后,超越 ResNet50-D 模型 4.7 个百分点。与此同时,在相同精度下,其推理速度也远超主流 VisionTransformer 的推理速度。
<a name='1.2'></a>
### 1.2 模型细节
PP-HGNet 作者针对 GPU 设备,对目前 GPU 友好的网络做了分析和归纳,尽可能多的使用 3x3 标准卷积(计算密度最高)。在此将 VOVNet 作为基准模型,将主要的有利于 GPU 推理的改进点进行融合。从而得到一个有利于 GPU 推理的骨干网络,同样速度下,精度大幅超越其他 CNN 或者 VisionTransformer 模型。
PP-HGNet 骨干网络的整体结构如下:
![](../../images/PP-HGNet/PP-HGNet.png)
其中PP-HGNet是由多个HG-Block组成HG-Block的细节如下
![](../../images/PP-HGNet/PP-HGNet-block.png)
<a name='1.3'></a>
### 1.3 实验结果
PP-HGNet 目前提供的模型的精度、速度指标及预训练权重链接如下:
| Model | Top-1 Acc(\%) | Top-5 Acc(\%) | Latency(ms) | 预训练模型下载地址 | inference模型下载地址 |
|:--: |:--: |:--: |:--: | :--: |:--: |
| PPHGNet_tiny | 79.83 | 95.04 | 1.77 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_infer.tar) |
| PPHGNet_tiny_ssld | 81.95 | 96.12 | 1.77 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_ssld_infer.tar) |
| PPHGNet_small | 81.51| 95.82 | 2.52 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_infer.tar) |
| PPHGNet_small_ssld | 83.82| 96.81 | 2.52 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_ssld_infer.tar) |
| PPHGNet_base_ssld | 85.00| 97.35 | 5.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_base_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_base_ssld_infer.tar) |
**备注:**
* 1. `_ssld` 表示使用 `SSLD 蒸馏`后的模型。关于 `SSLD蒸馏` 的内容,详情 [SSLD 蒸馏](../advanced_tutorials/knowledge_distillation.md)。
* 2. PP-HGNet 更多模型指标及权重,敬请期待。
PP-HGNet 与其他模型的比较如下,其中测试机器为 NVIDIA® Tesla® V100开启 TensorRT 引擎,精度类型为 FP32。在相同速度下PP-HGNet 精度均超越了其他 SOTA CNN 模型,在与 SwinTransformer 模型的比较中,在更高精度的同时,速度快 2 倍以上。
| Model | Top-1 Acc(\%) | Top-5 Acc(\%) | Latency(ms) |
|:--: |:--: |:--: |:--: |
| ResNet34 | 74.57 | 92.14 | 1.97 |
| ResNet34_vd | 75.98 | 92.98 | 2.00 |
| EfficientNetB0 | 77.38 | 93.31 | 1.96 |
| <b>PPHGNet_tiny<b> | <b>79.83<b> | <b>95.04<b> | <b>1.77<b> |
| <b>PPHGNet_tiny_ssld<b> | <b>81.95<b> | <b>96.12<b> | <b>1.77<b> |
| ResNet50 | 76.50 | 93.00 | 2.54 |
| ResNet50_vd | 79.12 | 94.44 | 2.60 |
| ResNet50_rsb | 80.40 | | 2.54 |
| EfficientNetB1 | 79.15 | 94.41 | 2.88 |
| SwinTransformer_tiny | 81.2 | 95.5 | 6.59 |
| <b>PPHGNet_small<b> | <b>81.51<b>| <b>95.82<b> | <b>2.52<b> |
| <b>PPHGNet_small_ssld<b> | <b>83.82<b>| <b>96.81<b> | <b>2.52<b> |
| Res2Net200_vd_26w_4s_ssld| 85.13 | 97.42 | 11.45 |
| ResNeXt101_32x48d_wsl | 85.37 | 97.69 | 55.07 |
| SwinTransformer_base | 85.2 | 97.5 | 13.53 |
| <b>PPHGNet_base_ssld<b> | <b>85.00<b>| <b>97.35<b> | <b>5.97<b> |
<a name="2"></a>
## 2. 模型快速体验
<a name="2.1"></a>
### 2.1 安装 paddleclas
使用如下命令快速安装 paddlepaddle, paddleclas
```
pip3 install paddlepaddle paddleclas
```
<a name="2.2"></a>
### 2.2 预测
* 在命令行中使用 PPHGNet_small 的权重快速预测
```bash
paddleclas --model_name=PPHGNet_small --infer_imgs="docs/images/inference_deployment/whl_demo.jpg"
```
结果如下:
```
>>> result
class_ids: [8, 7, 86, 82, 81], scores: [0.71479, 0.08682, 0.00806, 0.0023, 0.00121], label_names: ['hen', 'cock', 'partridge', 'ruffed grouse, partridge, Bonasa umbellus', 'ptarmigan'], filename: docs/images/inference_deployment/whl_demo.jpg
Predict complete!
```
**备注** 更换 PPHGNet 的其他 scale 的模型时,只需替换 `model_name`,如将此时的模型改为 `PPHGNet_tiny` 时,只需要将 `--model_name=PPHGNet_small` 改为 `--model_name=PPHGNet_tiny` 即可。
* 在 Python 代码中预测
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='PPHGNet_small')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
result = clas.predict(infer_imgs)
print(next(result))
```
**备注**`PaddleClas.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭
代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果。返回结果示例如下:
```
>>> result
[{'class_ids': [8, 7, 86, 82, 81], 'scores': [0.71479, 0.08682, 0.00806, 0.0023, 0.00121], 'label_names': ['hen', 'cock', 'partridge', 'ruffed grouse, partridge, Bonasa umbellus', 'ptarmigan'], 'filename': 'docs/images/inference_deployment/whl_demo.jpg'}]
```
<a name="3"></a>
## 3. 模型训练、评估和预测
<a name="3.1"></a>
### 3.1 环境配置
* 安装:请先参考文档[环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
### 3.2 数据准备
请在[ImageNet 官网](https://www.image-net.org/)准备 ImageNet-1k 相关的数据。
进入 PaddleClas 目录。
```
cd path_to_PaddleClas
```
进入 `dataset/` 目录,将下载好的数据命名为 `ILSVRC2012` ,存放于此。 `ILSVRC2012` 目录中具有以下数据:
```
├── train
│   ├── n01440764
│   │   ├── n01440764_10026.JPEG
│   │   ├── n01440764_10027.JPEG
├── train_list.txt
...
├── val
│   ├── ILSVRC2012_val_00000001.JPEG
│   ├── ILSVRC2012_val_00000002.JPEG
├── val_list.txt
```
其中 `train/``val/` 分别为训练集和验证集。`train_list.txt` 和 `val_list.txt` 分别为训练集和验证集的标签文件。
**备注:**
* 关于 `train_list.txt`、`val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明) 。
<a name="3.3"></a>
### 3.3 模型训练
`ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml` 中提供了 PPHGNet_small 训练配置,可以通过如下脚本启动训练:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
```
**备注:**
* 当前精度最佳的模型会保存在 `output/PPHGNet_small/best_model.pdparams`
<a name="3.4"></a>
### 3.4 模型评估
训练好模型之后,可以通过以下命令实现对模型指标的评估。
```bash
python3 tools/eval.py \
-c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml \
-o Global.pretrained_model=output/PPHGNet_small/best_model
```
其中 `-o Global.pretrained_model="output/PPHGNet_small/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
<a name="3.5"></a>
### 3.5 模型预测
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
```python
python3 tools/infer.py \
-c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml \
-o Global.pretrained_model=output/PPHGNet_small/best_model
```
输出结果如下:
```
[{'class_ids': [8, 7, 86, 82, 81], 'scores': [0.71479, 0.08682, 0.00806, 0.0023, 0.00121], 'file_name': 'docs/images/inference_deployment/whl_demo.jpg', 'label_names': ['hen', 'cock', 'partridge', 'ruffed grouse, partridge, Bonasa umbellus', 'ptarmigan']}]
```
**备注:**
* 这里`-o Global.pretrained_model="output/PPHGNet_small/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
* 默认是对 `docs/images/inference_deployment/whl_demo.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
* 默认输出的是 Top-5 的值,如果希望输出 Top-k 的值,可以指定`-o Infer.PostProcess.topk=k`,其中,`k` 为您指定的值。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端提供高性能的推理能力。相比于直接基于预训练模型进行预测Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
<a name="4.1.1"></a>
### 4.1.1 基于训练得到的权重导出 inference 模型
此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
```bash
python3 tools/export_model.py \
-c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml \
-o Global.pretrained_model=output/PPHGNet_small/best_model \
-o Global.save_inference_dir=deploy/models/PPHGNet_small_infer
```
执行完该脚本后会在 `deploy/models/` 下生成 `PPHGNet_small_infer` 文件夹,`models` 文件夹下应有如下文件结构:
```
├── PPHGNet_small_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
<a name="4.1.2"></a>
### 4.1.2 直接下载 inference 模型
[4.1.1 小节](#4.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
```
cd deploy/models
# 下载 inference 模型并解压
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_infer.tar && tar -xf PPHGNet_small_infer.tar
```
解压完毕后,`models` 文件夹下应有如下文件结构:
```
├── PPHGNet_small_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
<a name="4.2.1"></a>
#### 4.2.1 预测单张图像
返回 `deploy` 目录:
```
cd ../
```
运行下面的命令,对图像 `./images/ImageNet/ILSVRC2012_val_00000010.jpeg` 进行分类。
```shell
# 使用下面的命令使用 GPU 进行预测
python3 python/predict_cls.py -c configs/inference_cls.yaml -o Global.inference_model_dir=models/PPHGNet_small_infer
# 使用下面的命令使用 CPU 进行预测
python3 python/predict_cls.py -c configs/inference_cls.yaml -o Global.inference_model_dir=models/PPHGNet_small_infer -o Global.use_gpu=False
```
输出结果如下。
```
ILSVRC2012_val_00000010.jpeg: class id(s): [332, 153, 283, 338, 204], score(s): [0.50, 0.05, 0.02, 0.01, 0.01], label_name(s): ['Angora, Angora rabbit', 'Maltese dog, Maltese terrier, Maltese', 'Persian cat', 'guinea pig, Cavia cobaya', 'Lhasa, Lhasa apso']
```
<a name="4.2.2"></a>
#### 4.2.2 基于文件夹的批量预测
如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
```shell
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3 python/predict_cls.py -c configs/inference_cls.yaml -o Global.inference_model_dir=models/PPHGNet_small_infer -o Global.infer_imgs=images/ImageNet/
```
终端中会输出该文件夹内所有图像的分类结果,如下所示。
```
ILSVRC2012_val_00000010.jpeg: class id(s): [332, 153, 283, 338, 204], score(s): [0.50, 0.05, 0.02, 0.01, 0.01], label_name(s): ['Angora, Angora rabbit', 'Maltese dog, Maltese terrier, Maltese', 'Persian cat', 'guinea pig, Cavia cobaya', 'Lhasa, Lhasa apso']
ILSVRC2012_val_00010010.jpeg: class id(s): [626, 622, 531, 487, 633], score(s): [0.68, 0.02, 0.02, 0.02, 0.02], label_name(s): ['lighter, light, igniter, ignitor', 'lens cap, lens cover', 'digital watch', 'cellular telephone, cellular phone, cellphone, cell, mobile phone', "loupe, jeweler's loupe"]
ILSVRC2012_val_00020010.jpeg: class id(s): [178, 211, 171, 246, 741], score(s): [0.82, 0.00, 0.00, 0.00, 0.00], label_name(s): ['Weimaraner', 'vizsla, Hungarian pointer', 'Italian greyhound', 'Great Dane', 'prayer rug, prayer mat']
ILSVRC2012_val_00030010.jpeg: class id(s): [80, 83, 136, 23, 93], score(s): [0.84, 0.00, 0.00, 0.00, 0.00], label_name(s): ['black grouse', 'prairie chicken, prairie grouse, prairie fowl', 'European gallinule, Porphyrio porphyrio', 'vulture', 'hornbill']
```
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署包括TensorRT/OpenVINO/MNN/TNN/NCNN以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。