PaddleClas/deploy/hubserving/readme_en.md

196 lines
7.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

English | [简体中文](readme.md)
# Service deployment based on PaddleHub Serving
HubServing service pack contains 3 files, the directory is as follows:
```
hubserving/clas/
└─ __init__.py Empty file, required
└─ config.json Configuration file, optional, passed in as a parameter when using configuration to start the service
└─ module.py Main module file, required, contains the complete logic of the service
└─ params.py Parameter file, required, including parameters such as model path, pre- and post-processing parameters
```
## Quick start service
### 1. Prepare the environment
```shell
# Install version 2.0 of PaddleHub
pip3 install paddlehub==2.0.0b1 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
```
### 2. Download inference model
Before installing the service module, you need to prepare the inference model and put it in the correct path. The default model path is:
```
Model structure file: PaddleClas/inference/inference.pdmodel
Model parameters file: PaddleClas/inference/inference.pdiparams
```
* The model file path can be viewed and modified in `PaddleClas/deploy/hubserving/clas/params.py`.
It should be noted that the prefix of model structure file and model parameters file must be `inference`.
* More models provided by PaddleClas can be obtained from the [model library](../../docs/en/models/models_intro_en.md). You can also use models trained by yourself.
### 3. Install Service Module
* On Linux platform, the examples are as follows.
```shell
cd PaddleClas/deploy
hub install hubserving/clas/
```
* On Windows platform, the examples are as follows.
```shell
cd PaddleClas\deploy
hub install hubserving\clas\
```
### 4. Start service
#### Way 1. Start with command line parameters (CPU only)
**start command**
```shell
$ hub serving start --modules Module1==Version1 \
--port XXXX \
--use_multiprocess \
--workers \
```
**parameters**
|parameters|usage|
|-|-|
|--modules/-m|PaddleHub Serving pre-installed model, listed in the form of multiple Module==Version key-value pairs<br>*`When Version is not specified, the latest version is selected by default`*|
|--port/-p|Service port, default is 8866|
|--use_multiprocess|Enable concurrent mode, the default is single-process mode, this mode is recommended for multi-core CPU machines<br>*`Windows operating system only supports single-process mode`*|
|--workers|The number of concurrent tasks specified in concurrent mode, the default is `2*cpu_count-1`, where `cpu_count` is the number of CPU cores|
For example, start the 2-stage series service:
```shell
hub serving start -m clas_system
```
This completes the deployment of a service API, using the default port number 8866.
#### Way 2. Start with configuration fileCPU、GPU
**start command**
```shell
hub serving start --config/-c config.json
```
Wherein, the format of `config.json` is as follows:
```json
{
"modules_info": {
"clas_system": {
"init_args": {
"version": "1.0.0",
"use_gpu": true,
"enable_mkldnn": false
},
"predict_args": {
}
}
},
"port": 8866,
"use_multiprocess": false,
"workers": 2
}
```
- The configurable parameters in `init_args` are consistent with the `_initialize` function interface in `module.py`. Among them,
- when `use_gpu` is `true`, it means that the GPU is used to start the service.
- when `enable_mkldnn` is `true`, it means that use MKL-DNN to accelerate.
- The configurable parameters in `predict_args` are consistent with the `predict` function interface in `module.py`.
**Note:**
- When using the configuration file to start the service, other parameters will be ignored.
- If you use GPU prediction (that is, `use_gpu` is set to `true`), you need to set the environment variable CUDA_VISIBLE_DEVICES before starting the service, such as: ```export CUDA_VISIBLE_DEVICES=0```, otherwise you do not need to set it.
- **`use_gpu` and `use_multiprocess` cannot be `true` at the same time.**
- **When both `use_gpu` and `enable_mkldnn` are set to `true` at the same time, GPU is used to run and `enable_mkldnn` will be ignored.**
For example, use GPU card No. 3 to start the 2-stage series service:
```shell
cd PaddleClas/deploy
export CUDA_VISIBLE_DEVICES=3
hub serving start -c hubserving/clas/config.json
```
## Send prediction requests
After the service starts, you can use the following command to send a prediction request to obtain the prediction result:
```shell
cd PaddleClas/deploy
python hubserving/test_hubserving.py server_url image_path
```
Two required parameters need to be passed to the script:
- **server_url**: service addressformat of which is
`http://[ip_address]:[port]/predict/[module_name]`
- **image_path**: Test image path, can be a single image path or an image directory path
- **batch_size**: [**Optional**] batch_size. Default by `1`.
**Notice**:
If you want to use `Transformer series models`, such as `DeiT_***_384`, `ViT_***_384`, etc., please pay attention to the input size of model, and need to set `--resize_short=384`, `--resize=384`.
**Eg.**
```shell
python hubserving/test_hubserving.py --server_url http://127.0.0.1:8866/predict/clas_system --image_file ./hubserving/ILSVRC2012_val_00006666.JPEG --batch_size 8
```
### Returned result format
The returned result is a list, including the `top_k`'s classification results, corresponding scores and the time cost of prediction, details as follows.
```
list: The returned results
└─ list: The result of first picture
└─ list: The top-k classification results, sorted in descending order of score
└─ list: The scores corresponding to the top-k classification results, sorted in descending order of score
└─ float: The time cost of predicting the picture, unit second
```
**Note** If you need to add, delete or modify the returned fields, you can modify the corresponding module. For the details, refer to the user-defined modification service module in the next section.
## User defined service module modification
If you need to modify the service logic, the following steps are generally required:
1. Stop service
```shell
hub serving stop --port/-p XXXX
```
2. Modify the code in the corresponding files, like `module.py` and `params.py`, according to the actual needs. You need re-install(hub install hubserving/clas/) and re-deploy after modifing `module.py`.
After modifying and installing and before deploying, you can use `python hubserving/clas/module.py` to test the installed service module.
For example, if you need to replace the model used by the deployed service, you need to modify model path parameters `cfg.model_file` and `cfg.params_file` in `params.py`. Of course, other related parameters may need to be modified at the same time. Please modify and debug according to the actual situation.
3. Uninstall old service module
```shell
hub uninstall clas_system
```
4. Install modified service module
```shell
hub install hubserving/clas/
```
5. Restart service
```shell
hub serving start -m clas_system
```
**Note**:
Common parameters can be modified in params.py:
* Directory of model files(include model structure file and model parameters file):
```python
"inference_model_dir":
```
* The number of Top-k results returned during post-processing:
```python
'topk':
```
* Mapping file corresponding to label and class ID during post-processing:
```python
'class_id_map_file':
```
In order to avoid unnecessary delay and be able to predict in batch, the preprocessing (include resize, crop and other) is completed in the client, so modify [test_hubserving.py](./test_hubserving.py#L35-L52) if necessary.