62 lines
2.2 KiB
Python
62 lines
2.2 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# reference: https://arxiv.org/abs/2002.10857
|
|
|
|
import math
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
class CircleMargin(nn.Layer):
|
|
def __init__(self, embedding_size, class_num, margin, scale):
|
|
super(CircleMargin, self).__init__()
|
|
self.scale = scale
|
|
self.margin = margin
|
|
self.embedding_size = embedding_size
|
|
self.class_num = class_num
|
|
|
|
self.weight = self.create_parameter(
|
|
shape=[self.embedding_size, self.class_num],
|
|
is_bias=False,
|
|
default_initializer=paddle.nn.initializer.XavierNormal())
|
|
|
|
def forward(self, input, label):
|
|
feat_norm = paddle.sqrt(
|
|
paddle.sum(paddle.square(input), axis=1, keepdim=True))
|
|
input = paddle.divide(input, feat_norm)
|
|
|
|
weight_norm = paddle.sqrt(
|
|
paddle.sum(paddle.square(self.weight), axis=0, keepdim=True))
|
|
weight = paddle.divide(self.weight, weight_norm)
|
|
|
|
logits = paddle.matmul(input, weight)
|
|
if not self.training or label is None:
|
|
return logits
|
|
|
|
alpha_p = paddle.clip(-logits.detach() + 1 + self.margin, min=0.)
|
|
alpha_n = paddle.clip(logits.detach() + self.margin, min=0.)
|
|
delta_p = 1 - self.margin
|
|
delta_n = self.margin
|
|
|
|
m_hot = F.one_hot(label.reshape([-1]), num_classes=logits.shape[1])
|
|
|
|
logits_p = alpha_p * (logits - delta_p)
|
|
logits_n = alpha_n * (logits - delta_n)
|
|
pre_logits = logits_p * m_hot + logits_n * (1 - m_hot)
|
|
pre_logits = self.scale * pre_logits
|
|
|
|
return pre_logits
|