PaddleClas/docs/en/tutorials/getting_started_en.md

2.4 KiB
Raw Blame History

Getting Started


Please refer to Installation to setup environment at first, and prepare ImageNet1K data by following the instruction mentioned in the data

Setup

Setup PYTHONPATH

export PYTHONPATH=path_to_PaddleClas:$PYTHONPATH

Training and validating

PaddleClas support tools/train.py and tools/eval.py to start training and validating.

Training

# PaddleClas use paddle.distributed.launch to start multi-cards and multiprocess training.
# Set FLAGS_selected_gpus to indicate GPU cards

python -m paddle.distributed.launch \
    --selected_gpus="0,1,2,3" \
    tools/train.py \
        -c ./configs/ResNet/ResNet50_vd.yaml
  • log:
epoch:0    train    step:13    loss:7.9561    top1:0.0156    top5:0.1094    lr:0.100000    elapse:0.193

add -o params to update configuration

python -m paddle.distributed.launch \
    --selected_gpus="0,1,2,3" \
    tools/train.py \
        -c ./configs/ResNet/ResNet50_vd.yaml \
        -o use_mix=1 \
    --vdl_dir=./scalar/

  • log:
epoch:0    train    step:522    loss:1.6330    lr:0.100000    elapse:0.210

or modify configuration directly to config fileds, please refer to config for more details.

use visuldl to visulize training loss in the real time

visualdl --logdir ./scalar --host <host_IP> --port <port_num>

finetune

  • please refer to Trial for more details.

validation

python tools/eval.py \
    -c ./configs/eval.yaml \
    -o ARCHITECTURE.name="ResNet50_vd" \
    -o pretrained_model=path_to_pretrained_models

modify `configs/eval.yaml filed: `ARCHITECTURE.name` and filed: `pretrained_model` to config valid model or add -o params to update config directly.


**NOTE: ** when loading the pretrained model, should ignore the suffix ```.pdparams```

## Predict

PaddlePaddle supprot three predict interfaces
Use predicator interface to predict
First, export inference model

```bash
python tools/export_model.py \
    --model=model_name \
    --pretrained_model=pretrained_model_dir \
    --output_path=save_inference_dir

Second, start predicator enginee

python tools/infer/predict.py \
    -m model_path \
    -p params_path \
    -i image path \
    --use_gpu=1 \
    --use_tensorrt=True

please refer to inference for more details.