PaddleClas/ppcls/configs/ResNet50_UReID_infer.yaml

153 lines
3.5 KiB
YAML

# global configs
Global:
checkpoints: null
pretrained_model: null
# pretrained_model: "./pd_model_trace/ISE/ISE_M_model" # pretrained ISE model for Market1501
# pretrained_model: "./pd_model_trace/ISE/ISE_MS_model" # pretrained ISE model for MSMT17
output_dir: "./output/"
device: "gpu"
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 120
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 128, 256]
save_inference_dir: "./inference"
eval_mode: "retrieval"
# model architecture
Arch:
name: "RecModel"
infer_output_key: "features"
infer_add_softmax: False
Backbone:
name: "ResNet50_last_stage_stride1"
pretrained: True
BackboneStopLayer:
name: "avg_pool"
Neck:
name: "BNNeck"
num_features: 2048
Head:
name: "FC"
embedding_size: 2048
class_num: 751
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
- SupConLoss:
weight: 1.0
views: 2
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.04
regularizer:
name: 'L2'
coeff: 0.0005
# data loader for train and eval
DataLoader:
Train:
dataset:
name: "Market1501" # ["Market1501", "MSMT17"]
image_root: "./dataset"
cls_label_path: "bounding_box_train"
transform_ops:
- ResizeImage:
size: [128, 256]
interpolation: 'bicubic'
backend: 'pil'
- RandFlipImage:
flip_code: 1
- Pad:
padding: 10
fill: 0
- RandomCrop:
size: [128, 256]
pad_if_needed: False
- NormalizeImage:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.5
sl: 0.02
sh: 0.4
r1: 0.3
mean: [0.485, 0.456, 0.406]
sampler:
name: PKSampler
batch_size: 16
sample_per_id: 4
drop_last: True
shuffle: True
loader:
num_workers: 6
use_shared_memory: True
Eval:
Query:
dataset:
name: "Market1501" # ["Market1501", "MSMT17"]
image_root: "./dataset"
cls_label_path: "query"
transform_ops:
- ResizeImage:
size: [128, 256]
interpolation: 'bicubic'
backend: 'pil'
- NormalizeImage:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 6
use_shared_memory: True
Gallery:
dataset:
name: "Market1501" # ["Market1501", "MSMT17"]
image_root: "./dataset"
cls_label_path: "bounding_box_test"
transform_ops:
- ResizeImage:
size: [128, 256]
interpolation: 'bicubic'
backend: 'pil'
- NormalizeImage:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 6
use_shared_memory: True
Metric:
Eval:
- Recallk:
topk: [1, 5]
- mAP: {}