PaddleClas/docs/zh_CN/models/DPN_DenseNet.md

70 lines
7.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# DPN与DenseNet系列
## 概述
DenseNet是2017年CVPR best paper提出的一种新的网络结构该网络设计了一种新的跨层连接的block即dense-block。相比ResNet中的bottleneckdense-block设计了一个更激进的密集连接机制即互相连接所有的层每个层都会接受其前面所有层作为其额外的输入。DenseNet将所有的dense-block堆叠组合成了一个密集连接型网络。密集的连接方式使得DenseNe更容易进行梯度的反向传播使得网络更容易训练。
DPN的全称是Dual Path Networks即双通道网络。该网络是由DenseNet和ResNeXt结合的一个网络其证明了DenseNet能从靠前的层级中提取到新的特征而ResNeXt本质上是对之前层级中已提取特征的复用。作者进一步分析发现ResNeXt对特征有高复用率但冗余度低DenseNet能创造新特征但冗余度高。结合二者结构的优势作者设计了DPN网络。最终DPN网络在同样FLOPS和参数量下取得了比ResNeXt与DenseNet更好的结果。
该系列模型的FLOPS、参数量以及T4 GPU上的预测耗时如下图所示。
![](../../images/models/T4_benchmark/t4.fp32.bs4.DPN.flops.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.DPN.params.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.DPN.png)
![](../../images/models/T4_benchmark/t4.fp16.bs4.DPN.png)
目前PaddleClas开源的这两类模型的预训练模型一共有10个其指标如上图所示可以看到在相同的FLOPS和参数量下相比DenseNetDPN拥有更高的精度。但是由于DPN有更多的分支所以其推理速度要慢于DenseNet。由于DenseNet264的网络层数最深所以该网络是DenseNet系列模型中参数量最大的网络DenseNet161的网络的宽度最大导致其是该系列中网络中计算量最大、精度最高的网络。从推理速度来看计算量大且精度高的的DenseNet161比DenseNet264具有更快的速度所以其比DenseNet264具有更大的优势。
对于DPN系列网络模型的FLOPS和参数量越大模型的精度越高。其中由于DPN107的网络宽度最大所以其是该系列网络中参数量与计算量最大的网络。
## 精度、FLOPS和参数量
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| DenseNet121 | 0.757 | 0.926 | 0.750 | | 5.690 | 7.980 |
| DenseNet161 | 0.786 | 0.941 | 0.778 | | 15.490 | 28.680 |
| DenseNet169 | 0.768 | 0.933 | 0.764 | | 6.740 | 14.150 |
| DenseNet201 | 0.776 | 0.937 | 0.775 | | 8.610 | 20.010 |
| DenseNet264 | 0.780 | 0.939 | 0.779 | | 11.540 | 33.370 |
| DPN68 | 0.768 | 0.934 | 0.764 | 0.931 | 4.030 | 10.780 |
| DPN92 | 0.799 | 0.948 | 0.793 | 0.946 | 12.540 | 36.290 |
| DPN98 | 0.806 | 0.951 | 0.799 | 0.949 | 22.220 | 58.460 |
| DPN107 | 0.809 | 0.953 | 0.802 | 0.951 | 35.060 | 82.970 |
| DPN131 | 0.807 | 0.951 | 0.801 | 0.949 | 30.510 | 75.360 |
## 基于V100 GPU的预测速度
| Models | Crop Size | Resize Short Size | FP32<br>Batch Size=1<br>(ms) |
|-------------|-----------|-------------------|--------------------------|
| DenseNet121 | 224 | 256 | 4.371 |
| DenseNet161 | 224 | 256 | 8.863 |
| DenseNet169 | 224 | 256 | 6.391 |
| DenseNet201 | 224 | 256 | 8.173 |
| DenseNet264 | 224 | 256 | 11.942 |
| DPN68 | 224 | 256 | 11.805 |
| DPN92 | 224 | 256 | 17.840 |
| DPN98 | 224 | 256 | 21.057 |
| DPN107 | 224 | 256 | 28.685 |
| DPN131 | 224 | 256 | 28.083 |
## 基于T4 GPU的预测速度
| Models | Crop Size | Resize Short Size | FP16<br>Batch Size=1<br>(ms) | FP16<br>Batch Size=4<br>(ms) | FP16<br>Batch Size=8<br>(ms) | FP32<br>Batch Size=1<br>(ms) | FP32<br>Batch Size=4<br>(ms) | FP32<br>Batch Size=8<br>(ms) |
|-------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| DenseNet121 | 224 | 256 | 4.16436 | 7.2126 | 10.50221 | 4.40447 | 9.32623 | 15.25175 |
| DenseNet161 | 224 | 256 | 9.27249 | 14.25326 | 20.19849 | 10.39152 | 22.15555 | 35.78443 |
| DenseNet169 | 224 | 256 | 6.11395 | 10.28747 | 13.68717 | 6.43598 | 12.98832 | 20.41964 |
| DenseNet201 | 224 | 256 | 7.9617 | 13.4171 | 17.41949 | 8.20652 | 17.45838 | 27.06309 |
| DenseNet264 | 224 | 256 | 11.70074 | 19.69375 | 24.79545 | 12.14722 | 26.27707 | 40.01905 |
| DPN68 | 224 | 256 | 11.7827 | 13.12652 | 16.19213 | 11.64915 | 12.82807 | 18.57113 |
| DPN92 | 224 | 256 | 18.56026 | 20.35983 | 29.89544 | 18.15746 | 23.87545 | 38.68821 |
| DPN98 | 224 | 256 | 21.70508 | 24.7755 | 40.93595 | 21.18196 | 33.23925 | 62.77751 |
| DPN107 | 224 | 256 | 27.84462 | 34.83217 | 60.67903 | 27.62046 | 52.65353 | 100.11721 |
| DPN131 | 224 | 256 | 28.58941 | 33.01078 | 55.65146 | 28.33119 | 46.19439 | 89.24904 |