PaddleClas/docs/en/others/train_on_xpu_en.md

2.0 KiB
Raw Blame History

Introduction to Image Classification Model Kunlun (Continuously updated)


Contents

1. Forword

  • This document describes the models currently supported by Kunlun and how to train these models on Kunlun devices. To install PaddlePaddle that supports Kunlun, please refer to install_kunlun

2. Training of Kunlun

  • See quick_startfor data sources and pre-trained models. The training effect of Kunlun is aligned with CPU/GPU.

2.1 ResNet50

  • Command:
python3.7 ppcls/static/train.py \
    -c ppcls/configs/quick_start/kunlun/ResNet50_vd_finetune_kunlun.yaml \
    -o use_gpu=False \
    -o use_xpu=True \
    -o is_distributed=False

The difference with cpu/gpu training lies in the addition of -o use_xpu=True, indicating that the execution is on a Kunlun device.

2.2 MobileNetV3

  • Command
python3.7 ppcls/static/train.py \
    -c ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \
    -o use_gpu=False \
    -o use_xpu=True \
    -o is_distributed=False

2.3 HRNet

  • Command
python3.7 ppcls/static/train.py \
    -c ppcls/configs/quick_start/kunlun/HRNet_W18_C_finetune_kunlun.yaml \
    -o is_distributed=False \
    -o use_xpu=True \
    -o use_gpu=False

2.4 VGG16/19

  • Command
python3.7 ppcls/static/train.py \
    -c ppcls/configs/quick_start/VGG16_finetune_kunlun.yaml \
    -o use_gpu=False \
    -o use_xpu=True \
    -o is_distributed=False
python3.7 ppcls/static/train.py \
    -c ppcls/configs/quick_start/VGG19_finetune_kunlun.yaml \
    -o use_gpu=False \
    -o use_xpu=True \
    -o is_distributed=False