2.0 KiB
2.0 KiB
Introduction to Image Classification Model Kunlun (Continuously updated)
Contents
1. Forword
- This document describes the models currently supported by Kunlun and how to train these models on Kunlun devices. To install PaddlePaddle that supports Kunlun, please refer to install_kunlun
2. Training of Kunlun
- See quick_startfor data sources and pre-trained models. The training effect of Kunlun is aligned with CPU/GPU.
2.1 ResNet50
- Command:
python3.7 ppcls/static/train.py \
-c ppcls/configs/quick_start/kunlun/ResNet50_vd_finetune_kunlun.yaml \
-o use_gpu=False \
-o use_xpu=True \
-o is_distributed=False
The difference with cpu/gpu training lies in the addition of -o use_xpu=True, indicating that the execution is on a Kunlun device.
2.2 MobileNetV3
- Command:
python3.7 ppcls/static/train.py \
-c ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \
-o use_gpu=False \
-o use_xpu=True \
-o is_distributed=False
2.3 HRNet
- Command:
python3.7 ppcls/static/train.py \
-c ppcls/configs/quick_start/kunlun/HRNet_W18_C_finetune_kunlun.yaml \
-o is_distributed=False \
-o use_xpu=True \
-o use_gpu=False
2.4 VGG16/19
- Command:
python3.7 ppcls/static/train.py \
-c ppcls/configs/quick_start/VGG16_finetune_kunlun.yaml \
-o use_gpu=False \
-o use_xpu=True \
-o is_distributed=False
python3.7 ppcls/static/train.py \
-c ppcls/configs/quick_start/VGG19_finetune_kunlun.yaml \
-o use_gpu=False \
-o use_xpu=True \
-o is_distributed=False