PaddleClas/ppcls/utils/save_load.py

127 lines
4.5 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import errno
import os
import re
import shutil
import tempfile
import paddle.fluid as fluid
from ppcls.utils import logger
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
def _mkdir_if_not_exist(path):
"""
mkdir if not exists, ignore the exception when multiprocess mkdir together
"""
if not os.path.exists(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(path):
logger.warning(
'be happy if some process has already created {}'.format(
path))
else:
raise OSError('Failed to mkdir {}'.format(path))
def load_dygraph_pretrain(
model,
path=None,
load_static_weights=False, ):
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {} does not "
"exists.".format(path))
if load_static_weights:
pre_state_dict = fluid.load_program_state(path)
param_state_dict = {}
model_dict = model.state_dict()
for key in model_dict.keys():
weight_name = model_dict[key].name
if weight_name in pre_state_dict.keys():
print('Load weight: {}, shape: {}'.format(
weight_name, pre_state_dict[weight_name].shape))
param_state_dict[key] = pre_state_dict[weight_name]
else:
param_state_dict[key] = model_dict[key]
model.set_dict(param_state_dict)
return
param_state_dict, optim_state_dict = fluid.load_dygraph(path)
model.set_dict(param_state_dict)
return
def init_model(config, net, optimizer=None):
"""
load model from checkpoint or pretrained_model
"""
checkpoints = config.get('checkpoints')
if checkpoints:
assert os.path.exists(checkpoints + ".pdparams"), \
"Given dir {}.pdparams not exist.".format(checkpoints)
assert os.path.exists(checkpoints + ".pdopt"), \
"Given dir {}.pdopt not exist.".format(checkpoints)
para_dict, opti_dict = fluid.dygraph.load_dygraph(checkpoints)
net.set_dict(para_dict)
optimizer.set_dict(opti_dict)
logger.info(
logger.coloring("Finish initing model from {}".format(checkpoints),
"HEADER"))
return
pretrained_model = config.get('pretrained_model')
load_static_weights = config.get('load_static_weights', False)
use_distillation = config.get('use_distillation', False)
if pretrained_model:
if not isinstance(pretrained_model, list):
pretrained_model = [pretrained_model]
if not isinstance(load_static_weights, list):
load_static_weights = [load_static_weights] * len(pretrained_model)
for idx, pretrained in enumerate(pretrained_model):
load_static = load_static_weights[idx]
model = net
if use_distillation and not load_static:
model = net.teacher
load_dygraph_pretrain(
model, path=pretrained, load_static_weights=load_static)
logger.info(
logger.coloring("Finish initing model from {}".format(
pretrained_model), "HEADER"))
def save_model(net, optimizer, model_path, epoch_id, prefix='ppcls'):
"""
save model to the target path
"""
model_path = os.path.join(model_path, str(epoch_id))
_mkdir_if_not_exist(model_path)
model_prefix = os.path.join(model_path, prefix)
fluid.dygraph.save_dygraph(net.state_dict(), model_prefix)
fluid.dygraph.save_dygraph(optimizer.state_dict(), model_prefix)
logger.info(
logger.coloring("Already save model in {}".format(model_path),
"HEADER"))