PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py

366 lines
10 KiB
Python

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# reference: https://arxiv.org/abs/1409.4842
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"GoogLeNet":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
def xavier(channels, filter_size, name):
stdv = (3.0 / (filter_size**2 * channels))**0.5
param_attr = ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_weights")
return param_attr
class ConvLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None,
data_format="NCHW"):
super(ConvLayer, self).__init__()
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
data_format=data_format)
def forward(self, inputs):
y = self._conv(inputs)
return y
class Inception(nn.Layer):
def __init__(self,
input_channels,
output_channels,
filter1,
filter3R,
filter3,
filter5R,
filter5,
proj,
name=None,
data_format="NCHW"):
super(Inception, self).__init__()
self.data_format = data_format
self._conv1 = ConvLayer(
input_channels,
filter1,
1,
name="inception_" + name + "_1x1",
data_format=data_format)
self._conv3r = ConvLayer(
input_channels,
filter3R,
1,
name="inception_" + name + "_3x3_reduce",
data_format=data_format)
self._conv3 = ConvLayer(
filter3R,
filter3,
3,
name="inception_" + name + "_3x3",
data_format=data_format)
self._conv5r = ConvLayer(
input_channels,
filter5R,
1,
name="inception_" + name + "_5x5_reduce",
data_format=data_format)
self._conv5 = ConvLayer(
filter5R,
filter5,
5,
name="inception_" + name + "_5x5",
data_format=data_format)
self._pool = MaxPool2D(
kernel_size=3, stride=1, padding=1, data_format=data_format)
self._convprj = ConvLayer(
input_channels,
proj,
1,
name="inception_" + name + "_3x3_proj",
data_format=data_format)
def forward(self, inputs):
conv1 = self._conv1(inputs)
conv3r = self._conv3r(inputs)
conv3 = self._conv3(conv3r)
conv5r = self._conv5r(inputs)
conv5 = self._conv5(conv5r)
pool = self._pool(inputs)
convprj = self._convprj(pool)
if self.data_format == "NHWC":
cat = paddle.concat([conv1, conv3, conv5, convprj], axis=3)
else:
cat = paddle.concat([conv1, conv3, conv5, convprj], axis=1)
cat = F.relu(cat)
return cat
class GoogLeNetDY(nn.Layer):
def __init__(self, class_num=1000, data_format="NCHW"):
super(GoogLeNetDY, self).__init__()
self.data_format = data_format
self._conv = ConvLayer(
3, 64, 7, 2, name="conv1", data_format=data_format)
self._pool = MaxPool2D(
kernel_size=3, stride=2, data_format=data_format)
self._conv_1 = ConvLayer(
64, 64, 1, name="conv2_1x1", data_format=data_format)
self._conv_2 = ConvLayer(
64, 192, 3, name="conv2_3x3", data_format=data_format)
self._ince3a = Inception(
192,
192,
64,
96,
128,
16,
32,
32,
name="ince3a",
data_format=data_format)
self._ince3b = Inception(
256,
256,
128,
128,
192,
32,
96,
64,
name="ince3b",
data_format=data_format)
self._ince4a = Inception(
480,
480,
192,
96,
208,
16,
48,
64,
name="ince4a",
data_format=data_format)
self._ince4b = Inception(
512,
512,
160,
112,
224,
24,
64,
64,
name="ince4b",
data_format=data_format)
self._ince4c = Inception(
512,
512,
128,
128,
256,
24,
64,
64,
name="ince4c",
data_format=data_format)
self._ince4d = Inception(
512,
512,
112,
144,
288,
32,
64,
64,
name="ince4d",
data_format=data_format)
self._ince4e = Inception(
528,
528,
256,
160,
320,
32,
128,
128,
name="ince4e",
data_format=data_format)
self._ince5a = Inception(
832,
832,
256,
160,
320,
32,
128,
128,
name="ince5a",
data_format=data_format)
self._ince5b = Inception(
832,
832,
384,
192,
384,
48,
128,
128,
name="ince5b",
data_format=data_format)
self._pool_5 = AdaptiveAvgPool2D(1, data_format=data_format)
self._drop = Dropout(p=0.4, mode="downscale_in_infer")
self.flatten = nn.Flatten()
self._fc_out = Linear(
1024,
class_num,
weight_attr=xavier(1024, 1, "out"),
bias_attr=ParamAttr(name="out_offset"))
self._pool_o1 = AvgPool2D(
kernel_size=5, stride=3, data_format=data_format)
self._conv_o1 = ConvLayer(
512, 128, 1, name="conv_o1", data_format=data_format)
self._fc_o1 = Linear(
1152,
1024,
weight_attr=xavier(2048, 1, "fc_o1"),
bias_attr=ParamAttr(name="fc_o1_offset"))
self._drop_o1 = Dropout(p=0.7, mode="downscale_in_infer")
self._out1 = Linear(
1024,
class_num,
weight_attr=xavier(1024, 1, "out1"),
bias_attr=ParamAttr(name="out1_offset"))
self._pool_o2 = AvgPool2D(
kernel_size=5, stride=3, data_format=data_format)
self._conv_o2 = ConvLayer(
528, 128, 1, name="conv_o2", data_format=data_format)
self._fc_o2 = Linear(
1152,
1024,
weight_attr=xavier(2048, 1, "fc_o2"),
bias_attr=ParamAttr(name="fc_o2_offset"))
self._drop_o2 = Dropout(p=0.7, mode="downscale_in_infer")
self._out2 = Linear(
1024,
class_num,
weight_attr=xavier(1024, 1, "out2"),
bias_attr=ParamAttr(name="out2_offset"))
def forward(self, inputs):
if self.data_format == "NHWC":
inputs = paddle.transpose(inputs, [0, 2, 3, 1])
inputs.stop_gradient = True
x = self._conv(inputs)
x = self._pool(x)
x = self._conv_1(x)
x = self._conv_2(x)
x = self._pool(x)
x = self._ince3a(x)
x = self._ince3b(x)
x = self._pool(x)
ince4a = self._ince4a(x)
x = self._ince4b(ince4a)
x = self._ince4c(x)
ince4d = self._ince4d(x)
x = self._ince4e(ince4d)
x = self._pool(x)
x = self._ince5a(x)
ince5b = self._ince5b(x)
x = self._pool_5(ince5b)
x = self._drop(x)
x = self.flatten(x)
out = self._fc_out(x)
x = self._pool_o1(ince4a)
x = self._conv_o1(x)
x = self.flatten(x)
x = self._fc_o1(x)
x = F.relu(x)
x = self._drop_o1(x)
out1 = self._out1(x)
x = self._pool_o2(ince4d)
x = self._conv_o2(x)
x = self.flatten(x)
x = self._fc_o2(x)
x = self._drop_o2(x)
out2 = self._out2(x)
return [out, out1, out2]
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def GoogLeNet(pretrained=False, use_ssld=False, **kwargs):
model = GoogLeNetDY(**kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["GoogLeNet"], use_ssld=use_ssld)
return model