5.4 KiB
5.4 KiB
Logo识别
Logo识别技术,是现实生活中应用很广的一个领域,比如一张照片中是否出现了Adidas或者Nike的商标Logo,或者一个杯子上是否出现了星巴克或者可口可乐的商标Logo。通常Logo类别数量较多时,往往采用检测+识别两阶段方式,检测模块负责检测出潜在的Logo区域,根据检测区域抠图后输入识别模块进行识别。识别模块多采用检索的方式,根据查询图片和底库图片进行相似度排序获得预测类别。此文档主要对Logo图片的特征提取部分进行相关介绍,内容包括:
- 数据集及预处理方式
- Backbone的具体设置
- Loss函数的相关设置
全部的超参数及具体配置:ResNet50_ReID.yaml
数据集及预处理
LogoDet-3K数据集
LogoDet-3K数据集是具有完整标注的Logo数据集,有3000个标识类别,约20万个高质量的人工标注的标识对象和158652张图片。相关数据介绍参考原论文
数据预处理
由于原始的数据集中,车辆图像已经是由检测器检测后crop出的车辆图像,因此无需像训练ImageNet
中图像crop操作。整体的数据增强方式,按照顺序如下:
- 图像
Resize
到224 - 随机水平翻转
- AugMix
- Normlize:归一化到0~1
- RandomErasing
在配置文件中设置如下,详见transform_ops
部分:
DataLoader:
Train:
dataset:
# 具体使用的Dataset的的名称
name: "LogoDataset"
# 使用此数据集的具体参数
image_root: "dataset/LogoDet-3K-crop/train/"
cls_label_path: "dataset/LogoDet-3K-crop/LogoDet-3K+train.txt"
# 图像增广策略:ResizeImage、RandFlipImage等
transform_ops:
- ResizeImage:
size: 224
- RandFlipImage:
flip_code: 1
- AugMix:
prob: 0.5
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.5
sl: 0.02
sh: 0.4
r1: 0.3
mean: [0., 0., 0.]
sampler:
name: DistributedRandomIdentitySampler
batch_size: 128
num_instances: 2
drop_last: False
shuffle: True
loader:
num_workers: 6
use_shared_memory: False
Backbone的具体设置
具体是用ResNet50
作为backbone,主要做了如下修改:
-
使用ImageNet预训练模型
-
last stage stride=1, 保持最后输出特征图尺寸14x14
-
在最后加入一个embedding 卷积层,特征维度为512
在配置文件中Backbone设置如下:
Arch:
# 使用RecModel模型进行训练,目前支持普通ImageNet和RecModel两个方式
name: "RecModel"
# 导出inference model的具体配置
infer_output_key: "features"
infer_add_softmax: False
# 使用的Backbone
Backbone:
name: "ResNet50_last_stage_stride1"
pretrained: True
# 使用此层作为Backbone的feature输出,name为具体层的full_name
BackboneStopLayer:
name: "adaptive_avg_pool2d_0"
# Backbone的基础上,新增网络层。此模型添加1x1的卷积层(embedding)
Neck:
name: "VehicleNeck"
in_channels: 2048
out_channels: 512
# 增加CircleMargin head
Head:
name: "CircleMargin"
margin: 0.35
scale: 64
embedding_size: 512
Loss的设置
在Logo识别中,使用了Pairwise Cosface + CircleMargin 联合训练,其中权重比例为1:1
具体代码详见:PairwiseCosface 、CircleMargin
在配置文件中设置如下:
Loss:
Train:
- CELoss:
weight: 1.0
- PairwiseCosface:
margin: 0.35
gamma: 64
weight: 1.0
Eval:
- CELoss:
weight: 1.0
其他相关设置
Optimizer设置
Optimizer:
# 使用的优化器名称
name: Momentum
# 优化器具体参数
momentum: 0.9
lr:
# 使用的学习率调节具体名称
name: Cosine
# 学习率调节算法具体参数
learning_rate: 0.01
regularizer:
name: 'L2'
coeff: 0.0001
Eval Metric设置
Metric:
Eval:
# 使用Recallk和mAP两种评价指标
- Recallk:
topk: [1, 5]
- mAP: {}
其他超参数设置
Global:
# 如为null则从头开始训练。若指定中间训练保存的状态地址,则继续训练
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
class_num: 3000
# 保存模型的粒度,每个epoch保存一次
save_interval: 1
eval_during_train: True
eval_interval: 1
# 训练的epoch数
epochs: 120
# log输出频率
print_batch_step: 10
# 是否使用visualdl库
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: "./inference"
# 使用retrival的方式进行评测
eval_mode: "retrieval"