PaddleClas/ppcls/utils/save_load.py

186 lines
6.7 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import errno
import os
import re
import shutil
import tempfile
import paddle
from paddle.static import load_program_state
from paddle.utils.download import get_weights_path_from_url
from ppcls.utils import logger
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
def _mkdir_if_not_exist(path):
"""
mkdir if not exists, ignore the exception when multiprocess mkdir together
"""
if not os.path.exists(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(path):
logger.warning(
'be happy if some process has already created {}'.format(
path))
else:
raise OSError('Failed to mkdir {}'.format(path))
def load_dygraph_pretrain(model, path=None, load_static_weights=False):
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {} does not "
"exists.".format(path))
if load_static_weights:
pre_state_dict = load_program_state(path)
param_state_dict = {}
model_dict = model.state_dict()
for key in model_dict.keys():
weight_name = model_dict[key].name
if weight_name in pre_state_dict.keys():
logger.info('Load weight: {}, shape: {}'.format(
weight_name, pre_state_dict[weight_name].shape))
param_state_dict[key] = pre_state_dict[weight_name]
else:
param_state_dict[key] = model_dict[key]
model.set_dict(param_state_dict)
return
param_state_dict = paddle.load(path + ".pdparams")
model.set_dict(param_state_dict)
return
def load_dygraph_pretrain_from_url(model,
pretrained_url,
use_ssld,
load_static_weights=False):
if use_ssld:
pretrained_url = pretrained_url.replace("_pretrained",
"_ssld_pretrained")
local_weight_path = get_weights_path_from_url(pretrained_url).replace(
".pdparams", "")
load_dygraph_pretrain(
model, path=local_weight_path, load_static_weights=load_static_weights)
return
def load_distillation_model(model, pretrained_model, load_static_weights):
logger.info("In distillation mode, teacher model will be "
"loaded firstly before student model.")
if not isinstance(pretrained_model, list):
pretrained_model = [pretrained_model]
if not isinstance(load_static_weights, list):
load_static_weights = [load_static_weights] * len(pretrained_model)
teacher = model.teacher if hasattr(model,
"teacher") else model._layers.teacher
student = model.student if hasattr(model,
"student") else model._layers.student
load_dygraph_pretrain(
teacher,
path=pretrained_model[0],
load_static_weights=load_static_weights[0])
logger.info("Finish initing teacher model from {}".format(
pretrained_model))
# load student model
if len(pretrained_model) >= 2:
load_dygraph_pretrain(
student,
path=pretrained_model[1],
load_static_weights=load_static_weights[1])
logger.info("Finish initing student model from {}".format(
pretrained_model))
def init_model(config, net, optimizer=None):
"""
load model from checkpoint or pretrained_model
"""
checkpoints = config.get('checkpoints')
if checkpoints and optimizer is not None:
assert os.path.exists(checkpoints + ".pdparams"), \
"Given dir {}.pdparams not exist.".format(checkpoints)
assert os.path.exists(checkpoints + ".pdopt"), \
"Given dir {}.pdopt not exist.".format(checkpoints)
para_dict = paddle.load(checkpoints + ".pdparams")
opti_dict = paddle.load(checkpoints + ".pdopt")
metric_dict = paddle.load(checkpoints + ".pdstates")
net.set_dict(para_dict)
optimizer.set_state_dict(opti_dict)
logger.info("Finish load checkpoints from {}".format(checkpoints))
return metric_dict
pretrained_model = config.get('pretrained_model')
load_static_weights = config.get('load_static_weights', False)
use_distillation = config.get('use_distillation', False)
if pretrained_model:
if use_distillation:
load_distillation_model(net, pretrained_model, load_static_weights)
else: # common load
load_dygraph_pretrain(
net,
path=pretrained_model,
load_static_weights=load_static_weights)
logger.info(
logger.coloring("Finish load pretrained model from {}".format(
pretrained_model), "HEADER"))
def _save_student_model(net, model_prefix):
"""
save student model if the net is the network contains student
"""
student_model_prefix = model_prefix + "_student.pdparams"
if hasattr(net, "_layers"):
net = net._layers
if hasattr(net, "student"):
paddle.save(net.student.state_dict(), student_model_prefix)
logger.info("Already save student model in {}".format(
student_model_prefix))
def save_model(net,
optimizer,
metric_info,
model_path,
model_name="",
prefix='ppcls'):
"""
save model to the target path
"""
if paddle.distributed.get_rank() != 0:
return
model_path = os.path.join(model_path, model_name)
_mkdir_if_not_exist(model_path)
model_prefix = os.path.join(model_path, prefix)
_save_student_model(net, model_prefix)
paddle.save(net.state_dict(), model_prefix + ".pdparams")
paddle.save(optimizer.state_dict(), model_prefix + ".pdopt")
paddle.save(metric_info, model_prefix + ".pdstates")
logger.info("Already save model in {}".format(model_path))