PaddleClas/ppcls/engine/trainer.py

548 lines
22 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
import time
import datetime
import argparse
import paddle
import paddle.nn as nn
import paddle.distributed as dist
from ppcls.utils.check import check_gpu
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger
from ppcls.data import build_dataloader
from ppcls.arch import build_model
from ppcls.loss import build_loss
from ppcls.metric import build_metrics
from ppcls.optimizer import build_optimizer
from ppcls.utils.save_load import load_dygraph_pretrain
from ppcls.utils.save_load import init_model
from ppcls.utils import save_load
from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data.reader import create_operators
class Trainer(object):
def __init__(self, config, mode="train"):
self.mode = mode
self.config = config
self.output_dir = self.config['Global']['output_dir']
# set device
assert self.config["Global"]["device"] in ["cpu", "gpu", "xpu"]
self.device = paddle.set_device(self.config["Global"]["device"])
# set dist
self.config["Global"][
"distributed"] = paddle.distributed.get_world_size() != 1
if self.config["Global"]["distributed"]:
dist.init_parallel_env()
if "Head" in self.config["Arch"]:
self.config["Arch"]["Head"]["class_num"] = self.config["Global"][
"class_num"]
self.is_rec = True
else:
self.is_rec = False
self.model = build_model(self.config["Arch"])
if self.config["Global"]["pretrained_model"] is not None:
load_dygraph_pretrain(self.model,
self.config["Global"]["pretrained_model"])
if self.config["Global"]["distributed"]:
self.model = paddle.DataParallel(self.model)
self.vdl_writer = None
if self.config['Global']['use_visualdl']:
from visualdl import LogWriter
vdl_writer_path = os.path.join(self.output_dir, "vdl")
if not os.path.exists(vdl_writer_path):
os.makedirs(vdl_writer_path)
self.vdl_writer = LogWriter(logdir=vdl_writer_path)
logger.info('train with paddle {} and device {}'.format(
paddle.__version__, self.device))
# init members
self.train_dataloader = None
self.eval_dataloader = None
self.gallery_dataloader = None
self.query_dataloader = None
self.eval_mode = self.config["Global"].get("eval_mode",
"classification")
self.train_loss_func = None
self.eval_loss_func = None
self.train_metric_func = None
self.eval_metric_func = None
def train(self):
# build train loss and metric info
if self.train_loss_func is None:
loss_info = self.config["Loss"]["Train"]
self.train_loss_func = build_loss(loss_info)
if self.train_metric_func is None:
metric_config = self.config.get("Metric")
if metric_config is not None:
metric_config = metric_config.get("Train")
if metric_config is not None:
self.train_metric_func = build_metrics(metric_config)
if self.train_dataloader is None:
self.train_dataloader = build_dataloader(self.config["DataLoader"],
"Train", self.device)
step_each_epoch = len(self.train_dataloader)
optimizer, lr_sch = build_optimizer(self.config["Optimizer"],
self.config["Global"]["epochs"],
step_each_epoch,
self.model.parameters())
print_batch_step = self.config['Global']['print_batch_step']
save_interval = self.config["Global"]["save_interval"]
best_metric = {
"metric": 0.0,
"epoch": 0,
}
# key:
# val: metrics list word
output_info = dict()
time_info = {
"batch_cost": AverageMeter(
"batch_cost", '.5f', postfix=" s,"),
"reader_cost": AverageMeter(
"reader_cost", ".5f", postfix=" s,"),
}
# global iter counter
global_step = 0
if self.config["Global"]["checkpoints"] is not None:
metric_info = init_model(self.config["Global"], self.model,
optimizer)
if metric_info is not None:
best_metric.update(metric_info)
tic = time.time()
for epoch_id in range(best_metric["epoch"] + 1,
self.config["Global"]["epochs"] + 1):
acc = 0.0
for iter_id, batch in enumerate(self.train_dataloader()):
if iter_id == 5:
for key in time_info:
time_info[key].reset()
time_info["reader_cost"].update(time.time() - tic)
batch_size = batch[0].shape[0]
batch[1] = paddle.to_tensor(batch[1].numpy().astype("int64")
.reshape([-1, 1]))
global_step += 1
# image input
if not self.is_rec:
out = self.model(batch[0])
else:
out = self.model(batch[0], batch[1])
# calc loss
loss_dict = self.train_loss_func(out, batch[1])
for key in loss_dict:
if not key in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(loss_dict[key].numpy()[0],
batch_size)
# calc metric
if self.train_metric_func is not None:
metric_dict = self.train_metric_func(out, batch[-1])
for key in metric_dict:
if not key in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(metric_dict[key].numpy()[0],
batch_size)
# step opt and lr
loss_dict["loss"].backward()
optimizer.step()
optimizer.clear_grad()
lr_sch.step()
time_info["batch_cost"].update(time.time() - tic)
if iter_id % print_batch_step == 0:
lr_msg = "lr: {:.5f}".format(lr_sch.get_lr())
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].avg)
for key in output_info
])
time_msg = "s, ".join([
"{}: {:.5f}".format(key, time_info[key].avg)
for key in time_info
])
ips_msg = "ips: {:.5f} images/sec".format(
batch_size / time_info["batch_cost"].avg)
eta_sec = ((self.config["Global"]["epochs"] - epoch_id + 1
) * len(self.train_dataloader) - iter_id
) * time_info["batch_cost"].avg
eta_msg = "eta: {:s}".format(
str(datetime.timedelta(seconds=int(eta_sec))))
logger.info(
"[Train][Epoch {}][Iter: {}/{}]{}, {}, {}, {}, {}".
format(epoch_id, iter_id,
len(self.train_dataloader), lr_msg, metric_msg,
time_msg, ips_msg, eta_msg))
tic = time.time()
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].avg)
for key in output_info
])
logger.info("[Train][Epoch {}][Avg]{}".format(epoch_id,
metric_msg))
output_info.clear()
# eval model and save model if possible
if self.config["Global"][
"eval_during_train"] and epoch_id % self.config["Global"][
"eval_during_train"] == 0:
acc = self.eval(epoch_id)
if acc > best_metric["metric"]:
best_metric["metric"] = acc
best_metric["epoch"] = epoch_id
save_load.save_model(
self.model,
optimizer,
best_metric,
self.output_dir,
model_name=self.config["Arch"]["name"],
prefix="best_model")
logger.info("[Eval][Epoch {}][best metric: {}]".format(
epoch_id, acc))
self.model.train()
# save model
if epoch_id % save_interval == 0:
save_load.save_model(
self.model,
optimizer, {"metric": acc,
"epoch": epoch_id},
self.output_dir,
model_name=self.config["Arch"]["name"],
prefix="epoch_{}".format(epoch_id))
# save the latest model
save_load.save_model(
self.model,
optimizer, {"metric": acc,
"epoch": epoch_id},
self.output_dir,
model_name=self.config["Arch"]["name"],
prefix="latest")
def build_avg_metrics(self, info_dict):
return {key: AverageMeter(key, '7.5f') for key in info_dict}
@paddle.no_grad()
def eval(self, epoch_id=0):
self.model.eval()
if self.eval_loss_func is None:
loss_config = self.config.get("Loss", None)
if loss_config is not None:
loss_config = loss_config.get("Eval")
if loss_config is not None:
self.eval_loss_func = build_loss(loss_config)
if self.eval_mode == "classification":
if self.eval_dataloader is None:
self.eval_dataloader = build_dataloader(
self.config["DataLoader"], "Eval", self.device)
if self.eval_metric_func is None:
metric_config = self.config.get("Metric")
if metric_config is not None:
metric_config = metric_config.get("Eval")
if metric_config is not None:
self.eval_metric_func = build_metrics(metric_config)
eval_result = self.eval_cls(epoch_id)
elif self.eval_mode == "retrieval":
if self.gallery_dataloader is None:
self.gallery_dataloader = build_dataloader(
self.config["DataLoader"]["Eval"], "Gallery", self.device)
if self.query_dataloader is None:
self.query_dataloader = build_dataloader(
self.config["DataLoader"]["Eval"], "Query", self.device)
# build metric info
if self.eval_metric_func is None:
metric_config = self.config.get("Metric", None)
if metric_config is None:
metric_config = [{"name": "Recallk", "topk": (1, 5)}]
else:
metric_config = metric_config["Eval"]
self.eval_metric_func = build_metrics(metric_config)
eval_result = self.eval_retrieval(epoch_id)
else:
logger.warning("Invalid eval mode: {}".format(self.eval_mode))
eval_result = None
self.model.train()
return eval_result
@paddle.no_grad()
def eval_cls(self, epoch_id=0):
output_info = dict()
time_info = {
"batch_cost": AverageMeter(
"batch_cost", '.5f', postfix=" s,"),
"reader_cost": AverageMeter(
"reader_cost", ".5f", postfix=" s,"),
}
print_batch_step = self.config["Global"]["print_batch_step"]
metric_key = None
tic = time.time()
for iter_id, batch in enumerate(self.eval_dataloader()):
if iter_id == 5:
for key in time_info:
time_info[key].reset()
time_info["reader_cost"].update(time.time() - tic)
batch_size = batch[0].shape[0]
batch[0] = paddle.to_tensor(batch[0]).astype("float32")
batch[1] = paddle.to_tensor(batch[1]).reshape([-1, 1])
# image input
if self.is_rec:
out = self.model(batch[0], batch[1])
else:
out = self.model(batch[0])
# calc loss
if self.eval_loss_func is not None:
loss_dict = self.eval_loss_func(out, batch[-1])
for key in loss_dict:
if not key in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(loss_dict[key].numpy()[0],
batch_size)
# calc metric
if self.eval_metric_func is not None:
metric_dict = self.eval_metric_func(out, batch[-1])
if paddle.distributed.get_world_size() > 1:
for key in metric_dict:
paddle.distributed.all_reduce(
metric_dict[key],
op=paddle.distributed.ReduceOp.SUM)
metric_dict[key] = metric_dict[
key] / paddle.distributed.get_world_size()
for key in metric_dict:
if metric_key is None:
metric_key = key
if not key in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(metric_dict[key].numpy()[0],
batch_size)
time_info["batch_cost"].update(time.time() - tic)
if iter_id % print_batch_step == 0:
time_msg = "s, ".join([
"{}: {:.5f}".format(key, time_info[key].avg)
for key in time_info
])
ips_msg = "ips: {:.5f} images/sec".format(
batch_size / time_info["batch_cost"].avg)
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].val)
for key in output_info
])
logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format(
epoch_id, iter_id,
len(self.eval_dataloader), metric_msg, time_msg, ips_msg))
tic = time.time()
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].avg)
for key in output_info
])
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
# do not try to save best model
if self.eval_metric_func is None:
return -1
# return 1st metric in the dict
return output_info[metric_key].avg
def eval_retrieval(self, epoch_id=0):
self.model.eval()
cum_similarity_matrix = None
# step1. build gallery
gallery_feas, gallery_img_id, gallery_unique_id = self._cal_feature(
name='gallery')
query_feas, query_img_id, query_query_id = self._cal_feature(
name='query')
gallery_img_id = gallery_img_id
# if gallery_unique_id is not None:
# gallery_unique_id = gallery_unique_id
# step2. do evaluation
sim_block_size = self.config["Global"].get("sim_block_size", 64)
sections = [sim_block_size] * (len(query_feas) // sim_block_size)
if len(query_feas) % sim_block_size:
sections.append(len(query_feas) % sim_block_size)
fea_blocks = paddle.split(query_feas, num_or_sections=sections)
if query_query_id is not None:
query_id_blocks = paddle.split(
query_query_id, num_or_sections=sections)
image_id_blocks = paddle.split(
query_img_id, num_or_sections=sections)
metric_key = None
if self.eval_metric_func is None:
metric_dict = {metric_key: 0.}
else:
metric_dict = dict()
for block_idx, block_fea in enumerate(fea_blocks):
similarity_matrix = paddle.matmul(
block_fea, gallery_feas, transpose_y=True)
if query_query_id is not None:
query_id_block = query_id_blocks[block_idx]
query_id_mask = (query_id_block != gallery_unique_id.t())
image_id_block = image_id_blocks[block_idx]
image_id_mask = (image_id_block != gallery_img_id.t())
keep_mask = paddle.logical_or(query_id_mask, image_id_mask)
similarity_matrix = similarity_matrix * keep_mask.astype("float32")
metric_tmp = self.eval_metric_func(similarity_matrix,image_id_blocks[block_idx], gallery_img_id)
for key in metric_tmp:
if key not in metric_dict:
metric_dict[key] = metric_tmp[key]
else:
metric_dict[key] += metric_tmp[key]
num_sections = len(fea_blocks)
for key in metric_dict:
metric_dict[key] = metric_dict[key]/num_sections
metric_info_list = []
for key in metric_dict:
if metric_key is None:
metric_key = key
metric_info_list.append("{}: {:.5f}".format(key, metric_dict[key]))
metric_msg = ", ".join(metric_info_list)
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
return metric_dict[metric_key]
def _cal_feature(self, name='gallery'):
all_feas = None
all_image_id = None
all_unique_id = None
if name == 'gallery':
dataloader = self.gallery_dataloader
elif name == 'query':
dataloader = self.query_dataloader
else:
raise RuntimeError("Only support gallery or query dataset")
has_unique_id = False
for idx, batch in enumerate(dataloader(
)): # load is very time-consuming
batch = [paddle.to_tensor(x) for x in batch]
batch[1] = batch[1].reshape([-1, 1])
if len(batch) == 3:
has_unique_id = True
batch[2] = batch[2].reshape([-1, 1])
out = self.model(batch[0], batch[1])
batch_feas = out["features"]
# do norm
if self.config["Global"].get("feature_normalize", True):
feas_norm = paddle.sqrt(
paddle.sum(paddle.square(batch_feas), axis=1,
keepdim=True))
batch_feas = paddle.divide(batch_feas, feas_norm)
if all_feas is None:
all_feas = batch_feas
if has_unique_id:
all_unique_id = batch[2]
all_image_id = batch[1]
else:
all_feas = paddle.concat([all_feas, batch_feas])
all_image_id = paddle.concat([all_image_id, batch[1]])
if has_unique_id:
all_unique_id = paddle.concat([all_unique_id, batch[2]])
if paddle.distributed.get_world_size() > 1:
feat_list = []
img_id_list = []
unique_id_list = []
paddle.distributed.all_gather(feat_list, all_feas)
paddle.distributed.all_gather(img_id_list, all_image_id)
all_feas = paddle.concat(feat_list, axis=0)
all_image_id = paddle.concat(img_id_list, axis=0)
if has_unique_id:
paddle.distributed.all_gather(unique_id_list, all_unique_id)
all_unique_id = paddle.concat(unique_id_list, axis=0)
logger.info("Build {} done, all feat shape: {}, begin to eval..".
format(name, all_feas.shape))
return all_feas, all_image_id, all_unique_id
@paddle.no_grad()
def infer(self, ):
total_trainer = paddle.distributed.get_world_size()
local_rank = paddle.distributed.get_rank()
image_list = get_image_list(self.config["Infer"]["infer_imgs"])
# data split
image_list = image_list[local_rank::total_trainer]
preprocess_func = create_operators(self.config["Infer"]["transforms"])
postprocess_func = build_postprocess(self.config["Infer"][
"PostProcess"])
batch_size = self.config["Infer"]["batch_size"]
self.model.eval()
batch_data = []
image_file_list = []
for idx, image_file in enumerate(image_list):
with open(image_file, 'rb') as f:
x = f.read()
for process in preprocess_func:
x = process(x)
batch_data.append(x)
image_file_list.append(image_file)
if len(batch_data) >= batch_size or idx == len(image_list) - 1:
batch_tensor = paddle.to_tensor(batch_data)
out = self.model(batch_tensor)
result = postprocess_func(out, image_file_list)
print(result)
batch_data.clear()
image_file_list.clear()