171 lines
5.5 KiB
Python
171 lines
5.5 KiB
Python
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn as nn
|
|
from functools import lru_cache
|
|
|
|
|
|
class TopkAcc(nn.Layer):
|
|
def __init__(self, topk=(1, 5)):
|
|
super().__init__()
|
|
assert isinstance(topk, (int, list, tuple))
|
|
if isinstance(topk, int):
|
|
topk = [topk]
|
|
self.topk = topk
|
|
|
|
def forward(self, x, label):
|
|
if isinstance(x, dict):
|
|
x = x["logits"]
|
|
|
|
metric_dict = dict()
|
|
for k in self.topk:
|
|
metric_dict["top{}".format(k)] = paddle.metric.accuracy(
|
|
x, label, k=k)
|
|
return metric_dict
|
|
|
|
|
|
class mAP(nn.Layer):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
|
|
metric_dict = dict()
|
|
_, all_AP, _ = get_metrics(similarities_matrix, query_img_id,
|
|
gallery_img_id)
|
|
|
|
mAP = np.mean(all_AP)
|
|
metric_dict["mAP"] = mAP
|
|
return metric_dict
|
|
|
|
|
|
class mINP(nn.Layer):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
|
|
metric_dict = dict()
|
|
_, _, all_INP = get_metrics(similarities_matrix, query_img_id,
|
|
gallery_img_id)
|
|
|
|
mINP = np.mean(all_INP)
|
|
metric_dict["mINP"] = mINP
|
|
return metric_dict
|
|
|
|
|
|
class Recallk(nn.Layer):
|
|
def __init__(self, topk=(1, 5)):
|
|
super().__init__()
|
|
assert isinstance(topk, (int, list, tuple))
|
|
if isinstance(topk, int):
|
|
topk = [topk]
|
|
self.topk = topk
|
|
self.max_rank = max(self.topk) if max(self.topk) > 50 else 50
|
|
|
|
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
|
|
metric_dict = dict()
|
|
all_cmc, _, _ = get_metrics(similarities_matrix, query_img_id,
|
|
gallery_img_id, self.max_rank)
|
|
|
|
for k in self.topk:
|
|
metric_dict["recall{}".format(k)] = all_cmc[k - 1]
|
|
return metric_dict
|
|
|
|
|
|
# retrieval metrics
|
|
class RetriMetric(nn.Layer):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.max_rank = 50 #max(self.topk) if max(self.topk) > 50 else 50
|
|
|
|
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
|
|
metric_dict = dict()
|
|
all_cmc, all_AP, all_INP = get_metrics(
|
|
similarities_matrix, query_img_id, gallery_img_id, self.max_rank)
|
|
if "Recallk" in self.config.keys():
|
|
topk = self.config['Recallk']['topk']
|
|
assert isinstance(topk, (int, list, tuple))
|
|
if isinstance(topk, int):
|
|
topk = [topk]
|
|
for k in topk:
|
|
metric_dict["recall{}".format(k)] = all_cmc[k - 1]
|
|
if "mAP" in self.config.keys():
|
|
mAP = np.mean(all_AP)
|
|
metric_dict["mAP"] = mAP
|
|
if "mINP" in self.config.keys():
|
|
mINP = np.mean(all_INP)
|
|
metric_dict["mINP"] = mINP
|
|
return metric_dict
|
|
|
|
|
|
@lru_cache()
|
|
def get_metrics(similarities_matrix, query_img_id, gallery_img_id,
|
|
max_rank=50):
|
|
num_q, num_g = similarities_matrix.shape
|
|
q_pids = query_img_id.numpy().reshape((query_img_id.shape[0]))
|
|
g_pids = gallery_img_id.numpy().reshape((gallery_img_id.shape[0]))
|
|
if num_g < max_rank:
|
|
max_rank = num_g
|
|
print('Note: number of gallery samples is quite small, got {}'.format(
|
|
num_g))
|
|
indices = paddle.argsort(
|
|
similarities_matrix, axis=1, descending=True).numpy()
|
|
|
|
all_cmc = []
|
|
all_AP = []
|
|
all_INP = []
|
|
num_valid_q = 0
|
|
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
|
|
for q_idx in range(num_q):
|
|
raw_cmc = matches[q_idx]
|
|
if not np.any(raw_cmc):
|
|
continue
|
|
cmc = raw_cmc.cumsum()
|
|
pos_idx = np.where(raw_cmc == 1)
|
|
max_pos_idx = np.max(pos_idx)
|
|
inp = cmc[max_pos_idx] / (max_pos_idx + 1.0)
|
|
all_INP.append(inp)
|
|
cmc[cmc > 1] = 1
|
|
|
|
all_cmc.append(cmc[:max_rank])
|
|
num_valid_q += 1.
|
|
|
|
num_rel = raw_cmc.sum()
|
|
tmp_cmc = raw_cmc.cumsum()
|
|
tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)]
|
|
tmp_cmc = np.asarray(tmp_cmc) * raw_cmc
|
|
AP = tmp_cmc.sum() / num_rel
|
|
all_AP.append(AP)
|
|
assert num_valid_q > 0, 'Error: all query identities do not appear in gallery'
|
|
|
|
all_cmc = np.asarray(all_cmc).astype(np.float32)
|
|
all_cmc = all_cmc.sum(0) / num_valid_q
|
|
|
|
return all_cmc, all_AP, all_INP
|
|
|
|
|
|
class DistillationTopkAcc(TopkAcc):
|
|
def __init__(self, model_key, feature_key=None, topk=(1, 5)):
|
|
super().__init__(topk=topk)
|
|
self.model_key = model_key
|
|
self.feature_key = feature_key
|
|
|
|
def forward(self, x, label):
|
|
x = x[self.model_key]
|
|
if self.feature_key is not None:
|
|
x = x[self.feature_key]
|
|
return super().forward(x, label)
|