196 lines
7.0 KiB
Python
196 lines
7.0 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import argparse
|
|
import os
|
|
import sys
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(__dir__)
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
|
|
|
|
from sys import version_info
|
|
|
|
import paddle
|
|
from paddle.distributed import fleet
|
|
|
|
from ppcls.data import Reader
|
|
from ppcls.utils.config import get_config
|
|
from ppcls.utils import logger
|
|
from tools.static import program
|
|
from save_load import init_model, save_model
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser("PaddleClas train script")
|
|
parser.add_argument(
|
|
'-c',
|
|
'--config',
|
|
type=str,
|
|
default='configs/ResNet/ResNet50.yaml',
|
|
help='config file path')
|
|
parser.add_argument(
|
|
'--vdl_dir',
|
|
type=str,
|
|
default=None,
|
|
help='VisualDL logging directory for image.')
|
|
parser.add_argument(
|
|
'-p',
|
|
'--profiler_options',
|
|
type=str,
|
|
default=None,
|
|
help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
|
|
)
|
|
parser.add_argument(
|
|
'-o',
|
|
'--override',
|
|
action='append',
|
|
default=[],
|
|
help='config options to be overridden')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main(args):
|
|
config = get_config(args.config, overrides=args.override, show=True)
|
|
if config.get("is_distributed", True):
|
|
fleet.init(is_collective=True)
|
|
# assign the place
|
|
use_gpu = config.get("use_gpu", True)
|
|
# amp related config
|
|
if 'AMP' in config:
|
|
AMP_RELATED_FLAGS_SETTING = {
|
|
'FLAGS_cudnn_exhaustive_search': 1,
|
|
'FLAGS_conv_workspace_size_limit': 1500,
|
|
'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
|
|
'FLAGS_max_inplace_grad_add': 8,
|
|
}
|
|
os.environ['FLAGS_cudnn_batchnorm_spatial_persistent'] = '1'
|
|
paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
|
|
use_xpu = config.get("use_xpu", False)
|
|
assert (
|
|
use_gpu and use_xpu
|
|
) is not True, "gpu and xpu can not be true in the same time in static mode!"
|
|
|
|
if use_gpu:
|
|
place = paddle.set_device('gpu')
|
|
elif use_xpu:
|
|
place = paddle.set_device('xpu')
|
|
else:
|
|
place = paddle.set_device('cpu')
|
|
|
|
# startup_prog is used to do some parameter init work,
|
|
# and train prog is used to hold the network
|
|
startup_prog = paddle.static.Program()
|
|
train_prog = paddle.static.Program()
|
|
|
|
best_top1_acc = 0.0 # best top1 acc record
|
|
|
|
train_fetchs, lr_scheduler, train_feeds, optimizer = program.build(
|
|
config,
|
|
train_prog,
|
|
startup_prog,
|
|
is_train=True,
|
|
is_distributed=config.get("is_distributed", True))
|
|
|
|
if config.validate:
|
|
valid_prog = paddle.static.Program()
|
|
valid_fetchs, _, valid_feeds, _ = program.build(
|
|
config,
|
|
valid_prog,
|
|
startup_prog,
|
|
is_train=False,
|
|
is_distributed=config.get("is_distributed", True))
|
|
# clone to prune some content which is irrelevant in valid_prog
|
|
valid_prog = valid_prog.clone(for_test=True)
|
|
|
|
# create the "Executor" with the statement of which place
|
|
exe = paddle.static.Executor(place)
|
|
# Parameter initialization
|
|
exe.run(startup_prog)
|
|
# load pretrained models or checkpoints
|
|
init_model(config, train_prog, exe)
|
|
|
|
if 'AMP' in config and config.AMP.get("use_pure_fp16", False):
|
|
optimizer.amp_init(
|
|
place,
|
|
scope=paddle.static.global_scope(),
|
|
test_program=valid_prog if config.validate else None)
|
|
|
|
if not config.get("is_distributed", True):
|
|
compiled_train_prog = program.compile(
|
|
config, train_prog, loss_name=train_fetchs["loss"][0].name)
|
|
else:
|
|
compiled_train_prog = train_prog
|
|
|
|
if not config.get('use_dali', False):
|
|
train_dataloader = Reader(config, 'train', places=place)()
|
|
if config.validate and paddle.distributed.get_rank() == 0:
|
|
valid_dataloader = Reader(config, 'valid', places=place)()
|
|
compiled_valid_prog = program.compile(config, valid_prog)
|
|
else:
|
|
assert use_gpu is True, "DALI only support gpu, please set use_gpu to True!"
|
|
import dali
|
|
train_dataloader = dali.train(config)
|
|
if config.validate and paddle.distributed.get_rank() == 0:
|
|
valid_dataloader = dali.val(config)
|
|
compiled_valid_prog = program.compile(config, valid_prog)
|
|
|
|
vdl_writer = None
|
|
if args.vdl_dir:
|
|
if version_info.major == 2:
|
|
logger.info(
|
|
"visualdl is just supported for python3, so it is disabled in python2..."
|
|
)
|
|
else:
|
|
from visualdl import LogWriter
|
|
vdl_writer = LogWriter(args.vdl_dir)
|
|
|
|
for epoch_id in range(config.epochs):
|
|
# 1. train with train dataset
|
|
program.run(train_dataloader, exe, compiled_train_prog, train_feeds,
|
|
train_fetchs, epoch_id, 'train', config, vdl_writer,
|
|
lr_scheduler, args.profiler_options)
|
|
if paddle.distributed.get_rank() == 0:
|
|
# 2. validate with validate dataset
|
|
if config.validate and epoch_id % config.valid_interval == 0:
|
|
top1_acc = program.run(valid_dataloader, exe,
|
|
compiled_valid_prog, valid_feeds,
|
|
valid_fetchs, epoch_id, 'valid', config)
|
|
if top1_acc > best_top1_acc:
|
|
best_top1_acc = top1_acc
|
|
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
|
|
best_top1_acc, epoch_id)
|
|
logger.info("{:s}".format(logger.coloring(message, "RED")))
|
|
if epoch_id % config.save_interval == 0:
|
|
|
|
model_path = os.path.join(config.model_save_dir,
|
|
config.ARCHITECTURE["name"])
|
|
save_model(train_prog, model_path, "best_model")
|
|
|
|
# 3. save the persistable model
|
|
if epoch_id % config.save_interval == 0:
|
|
model_path = os.path.join(config.model_save_dir,
|
|
config.ARCHITECTURE["name"])
|
|
save_model(train_prog, model_path, epoch_id)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
paddle.enable_static()
|
|
args = parse_args()
|
|
main(args)
|