PaddleClas/ppcls/modeling/architectures/csp_resnet.py

259 lines
8.0 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
__all__ = [
"CSPResNet50_leaky", "CSPResNet50_mish", "CSPResNet101_leaky",
"CSPResNet101_mish"
]
class CSPResNet():
def __init__(self, layers=50, act="leaky_relu"):
self.layers = layers
self.act = act
def net(self, input, class_dim=1000, data_format="NCHW"):
layers = self.layers
supported_layers = [50, 101]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
if layers == 50:
depth = [3, 3, 5, 2]
elif layers == 101:
depth = [3, 3, 22, 2]
num_filters = [64, 128, 256, 512]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act=self.act,
name="conv1",
data_format=data_format)
conv = fluid.layers.pool2d(
input=conv,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='max',
data_format=data_format)
for block in range(len(depth)):
conv_name = "res" + str(block + 2) + chr(97)
if block != 0:
conv = self.conv_bn_layer(
input=conv,
num_filters=num_filters[block],
filter_size=3,
stride=2,
act=self.act,
name=conv_name + "_downsample",
data_format=data_format)
# split
left = conv
right = conv
if block == 0:
ch = num_filters[block]
else:
ch = num_filters[block] * 2
right = self.conv_bn_layer(
input=right,
num_filters=ch,
filter_size=1,
act=self.act,
name=conv_name + "_right_first_route",
data_format=data_format)
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
right = self.bottleneck_block(
input=right,
num_filters=num_filters[block],
stride=1,
name=conv_name,
data_format=data_format)
# route
left = self.conv_bn_layer(
input=left,
num_filters=num_filters[block] * 2,
filter_size=1,
act=self.act,
name=conv_name + "_left_route",
data_format=data_format)
right = self.conv_bn_layer(
input=right,
num_filters=num_filters[block] * 2,
filter_size=1,
act=self.act,
name=conv_name + "_right_route",
data_format=data_format)
conv = fluid.layers.concat([left, right], axis=1)
conv = self.conv_bn_layer(
input=conv,
num_filters=num_filters[block] * 2,
filter_size=1,
stride=1,
act=self.act,
name=conv_name + "_merged_transition",
data_format=data_format)
pool = fluid.layers.pool2d(
input=conv,
pool_type='avg',
global_pooling=True,
data_format=data_format)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
name="fc_0.w_0",
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc_0.b_0"))
return out
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None,
data_format='NCHW'):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.conv2d.output.1',
data_format=data_format)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
bn = fluid.layers.batch_norm(
input=conv,
act=None,
name=bn_name + '.output.1',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance',
data_layout=data_format)
if act == "relu":
bn = fluid.layers.relu(bn)
elif act == "leaky_relu":
bn = fluid.layers.leaky_relu(bn)
elif act == "mish":
bn = self._mish(bn)
return bn
def _mish(self, input):
return input * fluid.layers.tanh(self._softplus(input))
def _softplus(self, input):
expf = fluid.layers.exp(fluid.layers.clip(input, -200, 50))
return fluid.layers.log(1 + expf)
def shortcut(self, input, ch_out, stride, is_first, name, data_format):
if data_format == 'NCHW':
ch_in = input.shape[1]
else:
ch_in = input.shape[-1]
if ch_in != ch_out or stride != 1 or is_first is True:
return self.conv_bn_layer(
input, ch_out, 1, stride, name=name, data_format=data_format)
else:
return input
def bottleneck_block(self, input, num_filters, stride, name, data_format):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act="leaky_relu",
name=name + "_branch2a",
data_format=data_format)
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act="leaky_relu",
name=name + "_branch2b",
data_format=data_format)
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 2,
filter_size=1,
act=None,
name=name + "_branch2c",
data_format=data_format)
short = self.shortcut(
input,
num_filters * 2,
stride,
is_first=False,
name=name + "_branch1",
data_format=data_format)
ret = short + conv2
ret = fluid.layers.leaky_relu(ret, alpha=0.1)
return ret
def CSPResNet50_leaky():
model = CSPResNet(layers=50, act="leaky_relu")
return model
def CSPResNet50_mish():
model = CSPResNet(layers=50, act="mish")
return model
def CSPResNet101_leaky():
model = CSPResNet(layers=101, act="leaky_relu")
return model
def CSPResNet101_mish():
model = CSPResNet(layers=101, act="mish")
return model