PaddleClas/docs/zh_CN/fastdeploy/web/README.md

27 lines
1.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# MobileNet 前端部署示例
本节介绍部署PaddleClas的图像分类mobilenet模型在浏览器中运行以及@paddle-js-models/mobilenet npm包中的js接口。
## 1. 前端部署图像分类模型
图像分类模型web demo使用[**参考文档**](https://github.com/PaddlePaddle/FastDeploy/tree/develop/examples/application/js/web_demo)
## 2. MobileNet js接口
```
import * as mobilenet from "@paddle-js-models/mobilenet";
# mobilenet模型加载和初始化
await mobilenet.load()
# mobilenet模型执行预测并获得分类的类别
const res = await mobilenet.classify(img);
console.log(res);
```
**load()函数参数**
> * **Config**(dict): 图像分类模型配置参数,默认值为 {Path: 'https://paddlejs.bj.bcebos.com/models/fuse/mobilenet/mobileNetV2_fuse_activation/model.json', fill: '#fff', mean: [0.485, 0.456, 0.406],std: [0.229, 0.224, 0.225]}; 其中modelPath为js模型路径fill 为图像预处理padding的值mean和std分别为预处理的均值和标准差。
**classify()函数参数**
> * **img**(HTMLImageElement): 输入图像参数类型为HTMLImageElement。