PaddleClas/docs/zh_CN/models/SEResNext_and_Res2Net.md

11 KiB
Raw Blame History

SEResNeXt与Res2Net系列

概述

ResNeXt是ResNet的典型变种网络之一ResNeXt发表于2017年的CVPR会议。在此之前提升模型精度的方法主要集中在将网络变深或者变宽这样增加了参数量和计算量推理速度也会相应变慢。ResNeXt结构提出了通道分组cardinality的概念作者通过实验发现增加通道的组数比增加深度和宽度更有效。其可以在不增加参数复杂度的前提下提高准确率同时还减少了参数的数量所以是比较成功的ResNet的变种。

SENet是2017年ImageNet分类比赛的冠军方案其提出了一个全新的SE结构该结构可以迁移到任何其他网络中其通过控制scale的大小把每个通道间重要的特征增强不重要的特征减弱从而让提取的特征指向性更强。

Res2Net是2019年提出的一种全新的对ResNet的改进方案该方案可以和现有其他优秀模块轻松整合在不增加计算负载量的情况下在ImageNet、CIFAR-100等数据集上的测试性能超过了ResNet。Res2Net结构简单性能优越进一步探索了CNN在更细粒度级别的多尺度表示能力。Res2Net揭示了一个新的提升模型精度的维度即scale其是除了深度、宽度和基数的现有维度之外另外一个必不可少的更有效的因素。该网络在其他视觉任务如目标检测、图像分割等也有相当不错的表现。 目前PaddleClas开源的这三类的预训练模型一共有24个其指标如图所示从图中可以看出在同样Flops和Params下改进版的模型往往有更高的精度但是推理速度往往不如ResNet系列。另一方面Res2Net表现也较为优秀相比ResNeXt中的group操作、SEResNet中的SE结构操作Res2Net在相同Flops、Params和推理速度下往往精度更佳。

注意所有模型在预测时图像的crop_size设置为224resize_short_size设置为256。

精度、FLOPS和参数量

Models Top1 Top5 Reference
top1
Reference
top5
FLOPS
(G)
Parameters
(M)
Res2Net50_26w_4s 0.793 0.946 0.780 0.936 8.520 25.700
Res2Net50_vd_26w_4s 0.798 0.949 8.370 25.060
Res2Net50_14w_8s 0.795 0.947 0.781 0.939 9.010 25.720
Res2Net101_vd_26w_4s 0.806 0.952 16.670 45.220
Res2Net200_vd_26w_4s 0.812 0.957 31.490 76.210
ResNeXt50_32x4d 0.778 0.938 0.778 8.020 23.640
ResNeXt50_vd_32x4d 0.796 0.946 8.500 23.660
ResNeXt50_64x4d 0.784 0.941 15.060 42.360
ResNeXt50_vd_64x4d 0.801 0.949 15.540 42.380
ResNeXt101_32x4d 0.787 0.942 0.788 15.010 41.540
ResNeXt101_vd_32x4d 0.803 0.951 15.490 41.560
ResNeXt101_64x4d 0.784 0.945 0.796 29.050 78.120
ResNeXt101_vd_64x4d 0.808 0.952 29.530 78.140
ResNeXt152_32x4d 0.790 0.943 22.010 56.280
ResNeXt152_vd_32x4d 0.807 0.952 22.490 56.300
ResNeXt152_64x4d 0.795 0.947 43.030 107.570
ResNeXt152_vd_64x4d 0.811 0.953 43.520 107.590
SE_ResNet18_vd 0.733 0.914 4.140 11.800
SE_ResNet34_vd 0.765 0.932 7.840 21.980
SE_ResNet50_vd 0.795 0.948 8.670 28.090
SE_ResNeXt50_32x4d 0.784 0.940 0.789 0.945 8.020 26.160
SE_ResNeXt50_vd_32x4d 0.802 0.949 10.760 26.280
SE_ResNeXt101_32x4d 0.791 0.942 0.793 0.950 15.020 46.280
SENet154_vd 0.814 0.955 45.830 114.290

FP16预测速度

Models batch_size=1
(ms)
batch_size=4
(ms)
batch_size=8
(ms)
batch_size=32
(ms)
Res2Net50_26w_4s 2.625 3.338 4.670 11.939
Res2Net50_vd_26w_4s 2.642 3.480 4.862 13.089
Res2Net50_14w_8s 3.393 4.237 5.473 13.979
Res2Net101_vd_26w_4s 5.128 6.190 7.995 20.534
Res2Net200_vd_26w_4s 9.594 11.131 14.278 36.258
ResNeXt50_32x4d 6.795 7.102 8.444 18.938
ResNeXt50_vd_32x4d 7.455 7.231 8.891 19.849
ResNeXt50_64x4d 20.279 12.343 13.633 32.772
ResNeXt50_vd_64x4d 16.325 21.773 25.007 55.329
ResNeXt101_32x4d 14.847 15.092 15.847 42.681
ResNeXt101_vd_32x4d 15.227 15.139 16.603 39.371
ResNeXt101_64x4d 28.221 29.455 29.873 59.415
ResNeXt101_vd_64x4d 31.051 28.160 28.915 60.525
ResNeXt152_32x4d 22.961 23.167 24.173 51.621
ResNeXt152_vd_32x4d 23.259 23.469 23.886 52.085
ResNeXt152_64x4d 41.930 42.441 45.985 79.405
ResNeXt152_vd_64x4d 42.778 43.281 45.017 79.728
SE_ResNet18_vd 1.256 1.463 1.917 4.316
SE_ResNet34_vd 2.314 2.691 3.432 7.411
SE_ResNet50_vd 2.884 4.051 5.421 15.013
SE_ResNeXt50_32x4d 7.973 10.613 12.788 29.091
SE_ResNeXt50_vd_32x4d 8.340 12.245 15.253 30.399
SE_ResNeXt101_32x4d 17.324 21.004 28.541 52.888
SENet154_vd 47.234 48.018 52.967 109.787

FP32预测速度

Models batch_size=1
(ms)
batch_size=4
(ms)
batch_size=8
(ms)
batch_size=32
(ms)
Res2Net50_26w_4s 3.711 5.855 8.450 26.084
Res2Net50_vd_26w_4s 3.651 5.986 8.747 26.772
Res2Net50_14w_8s 4.549 6.863 9.492 27.049
Res2Net101_vd_26w_4s 6.658 10.870 15.364 47.054
Res2Net200_vd_26w_4s 12.017 19.871 28.330 88.645
ResNeXt50_32x4d 6.747 8.862 11.961 32.782
ResNeXt50_vd_32x4d 6.746 9.037 12.279 33.496
ResNeXt50_64x4d 11.577 14.570 20.425 57.979
ResNeXt50_vd_64x4d 19.219 21.454 30.943 90.950
ResNeXt101_32x4d 14.652 18.082 24.148 70.200
ResNeXt101_vd_32x4d 14.927 18.454 23.894 67.334
ResNeXt101_64x4d 28.726 30.999 43.169 116.282
ResNeXt101_vd_64x4d 28.350 31.186 41.315 113.655
ResNeXt152_32x4d 23.578 27.323 35.588 99.121
ResNeXt152_vd_32x4d 23.548 26.879 35.091 104.832
ResNeXt152_64x4d 43.214 43.339 60.990 159.381
ResNeXt152_vd_64x4d 43.998 44.510 61.094 160.601
SE_ResNet18_vd 1.353 1.867 3.021 9.331
SE_ResNet34_vd 2.421 3.201 5.294 16.849
SE_ResNet50_vd 3.403 6.023 8.721 26.978
SE_ResNeXt50_32x4d 8.339 12.689 15.471 41.562
SE_ResNeXt50_vd_32x4d 7.849 13.530 16.810 44.020
SE_ResNeXt101_32x4d 16.853 24.409 32.666 81.806
SENet154_vd 46.002 53.666 70.589 180.334