3.9 KiB
3.9 KiB
DPN与DenseNet系列
概述
模型概述正在持续更新中。
所有模型在预测时,图像的crop_size设置为224,resize_short_size设置为256。
精度、FLOPS和参数量
Models | Top1 | Top5 | Reference top1 |
Reference top5 |
FLOPS (G) |
Parameters (M) |
---|---|---|---|---|---|---|
DenseNet121 | 0.757 | 0.926 | 0.750 | 5.690 | 7.980 | |
DenseNet161 | 0.786 | 0.941 | 0.778 | 15.490 | 28.680 | |
DenseNet169 | 0.768 | 0.933 | 0.764 | 6.740 | 14.150 | |
DenseNet201 | 0.776 | 0.937 | 0.775 | 8.610 | 20.010 | |
DenseNet264 | 0.780 | 0.939 | 0.779 | 11.540 | 33.370 | |
DPN68 | 0.768 | 0.934 | 0.764 | 0.931 | 4.030 | 10.780 |
DPN92 | 0.799 | 0.948 | 0.793 | 0.946 | 12.540 | 36.290 |
DPN98 | 0.806 | 0.951 | 0.799 | 0.949 | 22.220 | 58.460 |
DPN107 | 0.809 | 0.953 | 0.802 | 0.951 | 35.060 | 82.970 |
DPN131 | 0.807 | 0.951 | 0.801 | 0.949 | 30.510 | 75.360 |
FP16预测速度
Models | batch_size=1 (ms) |
batch_size=4 (ms) |
batch_size=8 (ms) |
batch_size=32 (ms) |
---|---|---|---|---|
DenseNet121 | 3.653 | 4.560 | 5.574 | 11.517 |
DenseNet161 | 7.826 | 8.936 | 10.970 | 22.554 |
DenseNet169 | 5.625 | 6.698 | 7.876 | 14.983 |
DenseNet201 | 7.243 | 8.537 | 10.111 | 18.928 |
DenseNet264 | 10.882 | 12.539 | 14.645 | 26.455 |
DPN68 | 10.310 | 11.060 | 14.299 | 29.618 |
DPN92 | 16.335 | 17.373 | 23.197 | 45.210 |
DPN98 | 18.975 | 23.073 | 28.902 | 66.280 |
DPN107 | 24.932 | 28.607 | 37.513 | 89.112 |
DPN131 | 25.425 | 29.874 | 37.355 | 88.583 |
FP32预测速度
Models | batch_size=1 (ms) |
batch_size=4 (ms) |
batch_size=8 (ms) |
batch_size=32 (ms) |
---|---|---|---|---|
DenseNet121 | 3.732 | 6.614 | 8.517 | 21.755 |
DenseNet161 | 8.282 | 14.438 | 19.336 | 51.953 |
DenseNet169 | 5.705 | 10.074 | 12.432 | 28.756 |
DenseNet201 | 7.315 | 13.830 | 16.941 | 38.654 |
DenseNet264 | 10.986 | 21.460 | 25.724 | 56.501 |
DPN68 | 10.357 | 11.025 | 14.903 | 34.380 |
DPN92 | 16.067 | 21.315 | 26.176 | 62.126 |
DPN98 | 18.455 | 26.710 | 36.009 | 104.084 |
DPN107 | 24.164 | 37.691 | 51.307 | 148.041 |
DPN131 | 24.761 | 35.806 | 48.401 | 133.233 |