PaddleClas/docs/zh_cn/models/DPN_DenseNet.md

3.9 KiB
Raw Blame History

DPN与DenseNet系列

概述

模型概述正在持续更新中。 所有模型在预测时图像的crop_size设置为224resize_short_size设置为256。

精度、FLOPS和参数量

Models Top1 Top5 Reference
top1
Reference
top5
FLOPS
(G)
Parameters
(M)
DenseNet121 0.757 0.926 0.750 5.690 7.980
DenseNet161 0.786 0.941 0.778 15.490 28.680
DenseNet169 0.768 0.933 0.764 6.740 14.150
DenseNet201 0.776 0.937 0.775 8.610 20.010
DenseNet264 0.780 0.939 0.779 11.540 33.370
DPN68 0.768 0.934 0.764 0.931 4.030 10.780
DPN92 0.799 0.948 0.793 0.946 12.540 36.290
DPN98 0.806 0.951 0.799 0.949 22.220 58.460
DPN107 0.809 0.953 0.802 0.951 35.060 82.970
DPN131 0.807 0.951 0.801 0.949 30.510 75.360

FP16预测速度

Models batch_size=1
(ms)
batch_size=4
(ms)
batch_size=8
(ms)
batch_size=32
(ms)
DenseNet121 3.653 4.560 5.574 11.517
DenseNet161 7.826 8.936 10.970 22.554
DenseNet169 5.625 6.698 7.876 14.983
DenseNet201 7.243 8.537 10.111 18.928
DenseNet264 10.882 12.539 14.645 26.455
DPN68 10.310 11.060 14.299 29.618
DPN92 16.335 17.373 23.197 45.210
DPN98 18.975 23.073 28.902 66.280
DPN107 24.932 28.607 37.513 89.112
DPN131 25.425 29.874 37.355 88.583

FP32预测速度

Models batch_size=1
(ms)
batch_size=4
(ms)
batch_size=8
(ms)
batch_size=32
(ms)
DenseNet121 3.732 6.614 8.517 21.755
DenseNet161 8.282 14.438 19.336 51.953
DenseNet169 5.705 10.074 12.432 28.756
DenseNet201 7.315 13.830 16.941 38.654
DenseNet264 10.986 21.460 25.724 56.501
DPN68 10.357 11.025 14.903 34.380
DPN92 16.067 21.315 26.176 62.126
DPN98 18.455 26.710 36.009 104.084
DPN107 24.164 37.691 51.307 148.041
DPN131 24.761 35.806 48.401 133.233