PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py

597 lines
16 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn
from paddle import ParamAttr
from paddle.nn.functional import upsample
from paddle.nn.initializer import Uniform
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer, Identity
MODEL_URLS = {
"HRNet_W18_C": "",
"HRNet_W30_C": "",
"HRNet_W32_C": "",
"HRNet_W40_C": "",
"HRNet_W44_C": "",
"HRNet_W48_C": "",
"HRNet_W60_C": "",
"HRNet_W64_C": "",
"SE_HRNet_W18_C": "",
"SE_HRNet_W30_C": "",
"SE_HRNet_W32_C": "",
"SE_HRNet_W40_C": "",
"SE_HRNet_W44_C": "",
"SE_HRNet_W48_C": "",
"SE_HRNet_W60_C": "",
"SE_HRNet_W64_C": "",
}
__all__ = list(MODEL_URLS.keys())
class ConvBNLayer(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act="relu"):
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
bias_attr=False)
self.bn = nn.BatchNorm(
num_filters,
act=None)
self.act = create_act(act)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
return x
def create_act(act):
if act == 'hardswish':
return nn.Hardswish()
elif act == 'relu':
return nn.ReLU()
elif act is None:
return Identity()
else:
raise RuntimeError(
'The activation function is not supported: {}'.format(act))
class BottleneckBlock(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
has_se,
stride=1,
downsample=False):
super(BottleneckBlock, self).__init__()
self.has_se = has_se
self.downsample = downsample
self.conv1 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act="relu")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act="relu")
self.conv3 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None)
if self.downsample:
self.conv_down = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
act=None)
if self.has_se:
self.se = SELayer(
num_channels=num_filters * 4,
num_filters=num_filters * 4,
reduction_ratio=16)
self.relu = nn.ReLU()
def forward(self, x, res_dict=None):
residual = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
if self.downsample:
residual = self.conv_down(residual)
if self.has_se:
x = self.se(x)
x = paddle.add(x=residual, y=x)
x = self.relu(x)
return x
class BasicBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
has_se=False):
super(BasicBlock, self).__init__()
self.has_se = has_se
self.conv1 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
stride=1,
act="relu")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=1,
act=None)
if self.has_se:
self.se = SELayer(
num_channels=num_filters,
num_filters=num_filters,
reduction_ratio=16)
self.relu = nn.ReLU()
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.conv2(x)
if self.has_se:
x = self.se(x)
x = paddle.add(x=residual, y=x)
x = self.relu(x)
return x
class SELayer(TheseusLayer):
def __init__(self, num_channels, num_filters, reduction_ratio):
super(SELayer, self).__init__()
self.pool2d_gap = nn.AdaptiveAvgPool2D(1)
self._num_channels = num_channels
med_ch = int(num_channels / reduction_ratio)
stdv = 1.0 / math.sqrt(num_channels * 1.0)
self.fc_squeeze = nn.Linear(
num_channels,
med_ch,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv)))
self.relu = nn.ReLU()
stdv = 1.0 / math.sqrt(med_ch * 1.0)
self.fc_excitation = nn.Linear(
med_ch,
num_filters,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
self.sigmoid = nn.Sigmoid()
def forward(self, x, res_dict=None):
residual = x
x = self.pool2d_gap(x)
x = paddle.squeeze(x, axis=[2, 3])
x = self.fc_squeeze(x)
x = self.relu(x)
x = self.fc_excitation(x)
x = self.sigmoid(x)
x = paddle.unsqueeze(x, axis=[2, 3])
x = residual * x
return x
class Stage(TheseusLayer):
def __init__(self,
num_modules,
num_filters,
has_se=False):
super(Stage, self).__init__()
self._num_modules = num_modules
self.stage_func_list = nn.LayerList()
for i in range(num_modules):
self.stage_func_list.append(
HighResolutionModule(
num_filters=num_filters,
has_se=has_se))
def forward(self, x, res_dict=None):
x = x
for idx in range(self._num_modules):
x = self.stage_func_list[idx](x)
return x
class HighResolutionModule(TheseusLayer):
def __init__(self,
num_filters,
has_se=False):
super(HighResolutionModule, self).__init__()
self.basic_block_list = nn.LayerList()
for i in range(len(num_filters)):
self.basic_block_list.append(
nn.Sequential(*[
BasicBlock(
num_channels=num_filters[i],
num_filters=num_filters[i],
has_se=has_se) for j in range(4)]))
self.fuse_func = FuseLayers(
in_channels=num_filters,
out_channels=num_filters)
def forward(self, x, res_dict=None):
out = []
for idx, xi in enumerate(x):
basic_block_list = self.basic_block_list[idx]
for basic_block_func in basic_block_list:
xi = basic_block_func(xi)
out.append(xi)
out = self.fuse_func(out)
return out
class FuseLayers(TheseusLayer):
def __init__(self,
in_channels,
out_channels):
super(FuseLayers, self).__init__()
self._actual_ch = len(in_channels)
self._in_channels = in_channels
self.residual_func_list = nn.LayerList()
self.relu = nn.ReLU()
for i in range(len(in_channels)):
for j in range(len(in_channels)):
if j > i:
self.residual_func_list.append(
ConvBNLayer(
num_channels=in_channels[j],
num_filters=out_channels[i],
filter_size=1,
stride=1,
act=None))
elif j < i:
pre_num_filters = in_channels[j]
for k in range(i - j):
if k == i - j - 1:
self.residual_func_list.append(
ConvBNLayer(
num_channels=pre_num_filters,
num_filters=out_channels[i],
filter_size=3,
stride=2,
act=None))
pre_num_filters = out_channels[i]
else:
self.residual_func_list.append(
ConvBNLayer(
num_channels=pre_num_filters,
num_filters=out_channels[j],
filter_size=3,
stride=2,
act="relu"))
pre_num_filters = out_channels[j]
def forward(self, x, res_dict=None):
out = []
residual_func_idx = 0
for i in range(len(self._in_channels)):
residual = x[i]
for j in range(len(self._in_channels)):
if j > i:
xj = self.residual_func_list[residual_func_idx](x[j])
residual_func_idx += 1
xj = upsample(xj, scale_factor=2**(j - i), mode="nearest")
residual = paddle.add(x=residual, y=xj)
elif j < i:
xj = x[j]
for k in range(i - j):
xj = self.residual_func_list[residual_func_idx](xj)
residual_func_idx += 1
residual = paddle.add(x=residual, y=xj)
residual = self.relu(residual)
out.append(residual)
return out
class LastClsOut(TheseusLayer):
def __init__(self,
num_channel_list,
has_se,
num_filters_list=[32, 64, 128, 256]):
super(LastClsOut, self).__init__()
self.func_list = nn.LayerList()
for idx in range(len(num_channel_list)):
self.func_list.append(
BottleneckBlock(
num_channels=num_channel_list[idx],
num_filters=num_filters_list[idx],
has_se=has_se,
downsample=True))
def forward(self, x, res_dict=None):
out = []
for idx, xi in enumerate(x):
xi = self.func_list[idx](xi)
out.append(xi)
return out
class HRNet(TheseusLayer):
"""
HRNet
Args:
width: int=18. Base channel number of HRNet.
has_se: bool=False. If 'True', add se module to HRNet.
class_num: int=1000. Output num of last fc layer.
"""
def __init__(self, width=18, has_se=False, class_num=1000):
super(HRNet, self).__init__()
self.width = width
self.has_se = has_se
self._class_num = class_num
channels_2 = [self.width, self.width * 2]
channels_3 = [self.width, self.width * 2, self.width * 4]
channels_4 = [self.width, self.width * 2, self.width * 4, self.width * 8]
self.conv_layer1_1 = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=3,
stride=2,
act='relu')
self.conv_layer1_2 = ConvBNLayer(
num_channels=64,
num_filters=64,
filter_size=3,
stride=2,
act='relu')
self.layer1 = nn.Sequential(*[
BottleneckBlock(
num_channels=64 if i == 0 else 256,
num_filters=64,
has_se=has_se,
stride=1,
downsample=True if i == 0 else False)
for i in range(4)
])
self.conv_tr1_1 = ConvBNLayer(
num_channels=256,
num_filters=width,
filter_size=3)
self.conv_tr1_2 = ConvBNLayer(
num_channels=256,
num_filters=width * 2,
filter_size=3,
stride=2
)
self.st2 = Stage(
num_modules=1,
num_filters=channels_2,
has_se=self.has_se)
self.conv_tr2 = ConvBNLayer(
num_channels=width * 2,
num_filters=width * 4,
filter_size=3,
stride=2
)
self.st3 = Stage(
num_modules=4,
num_filters=channels_3,
has_se=self.has_se)
self.conv_tr3 = ConvBNLayer(
num_channels=width * 4,
num_filters=width * 8,
filter_size=3,
stride=2
)
self.st4 = Stage(
num_modules=3,
num_filters=channels_4,
has_se=self.has_se)
# classification
num_filters_list = [32, 64, 128, 256]
self.last_cls = LastClsOut(
num_channel_list=channels_4,
has_se=self.has_se,
num_filters_list=num_filters_list)
last_num_filters = [256, 512, 1024]
self.cls_head_conv_list = nn.LayerList()
for idx in range(3):
self.cls_head_conv_list.append(
ConvBNLayer(
num_channels=num_filters_list[idx] * 4,
num_filters=last_num_filters[idx],
filter_size=3,
stride=2))
self.conv_last = ConvBNLayer(
num_channels=1024,
num_filters=2048,
filter_size=1,
stride=1)
self.avg_pool = nn.AdaptiveAvgPool2D(1)
stdv = 1.0 / math.sqrt(2048 * 1.0)
self.fc = nn.Linear(
2048,
class_num,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
def forward(self, x, res_dict=None):
x = self.conv_layer1_1(x)
x = self.conv_layer1_2(x)
x = self.layer1(x)
tr1_1 = self.conv_tr1_1(x)
tr1_2 = self.conv_tr1_2(x)
x = self.st2([tr1_1, tr1_2])
tr2 = self.conv_tr2(x[-1])
x.append(tr2)
x = self.st3(x)
tr3 = self.conv_tr3(x[-1])
x.append(tr3)
x = self.st4(x)
x = self.last_cls(x)
y = x[0]
for idx in range(3):
y = paddle.add(x[idx + 1], self.cls_head_conv_list[idx](y))
y = self.conv_last(y)
y = self.avg_pool(y)
y = paddle.reshape(y, shape=[-1, y.shape[1]])
y = self.fc(y)
return y
def HRNet_W18_C(**args):
model = HRNet(width=18, **args)
return model
def HRNet_W30_C(**args):
model = HRNet(width=30, **args)
return model
def HRNet_W32_C(**args):
model = HRNet(width=32, **args)
return model
def HRNet_W40_C(**args):
model = HRNet(width=40, **args)
return model
def HRNet_W44_C(**args):
model = HRNet(width=44, **args)
return model
def HRNet_W48_C(**args):
model = HRNet(width=48, **args)
return model
def HRNet_W60_C(**args):
model = HRNet(width=60, **args)
return model
def HRNet_W64_C(**args):
model = HRNet(width=64, **args)
return model
def SE_HRNet_W18_C(**args):
model = HRNet(width=18, has_se=True, **args)
return model
def SE_HRNet_W30_C(**args):
model = HRNet(width=30, has_se=True, **args)
return model
def SE_HRNet_W32_C(**args):
model = HRNet(width=32, has_se=True, **args)
return model
def SE_HRNet_W40_C(**args):
model = HRNet(width=40, has_se=True, **args)
return model
def SE_HRNet_W44_C(**args):
model = HRNet(width=44, has_se=True, **args)
return model
def SE_HRNet_W48_C(**args):
model = HRNet(width=48, has_se=True, **args)
return model
def SE_HRNet_W60_C(**args):
model = HRNet(width=60, has_se=True, **args)
return model
def SE_HRNet_W64_C(**args):
model = HRNet(width=64, has_se=True, **args)
return model