PaddleClas/ppcls/arch/backbone/model_zoo/starnet.py

198 lines
6.9 KiB
Python

# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# reference: https://arxiv.org/abs/2403.19967
import paddle
import paddle.nn as nn
from ....utils.save_load import load_dygraph_pretrain
from ..model_zoo.vision_transformer import DropPath
MODEL_URLS = {
"StarNet_S1":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/StarNet_S1_pretrained.pdparams",
"StarNet_S2":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/StarNet_S2_pretrained.pdparams",
"StarNet_S3":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/StarNet_S3_pretrained.pdparams",
"StarNet_S4":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/StarNet_S4_pretrained.pdparams",
}
__all__ = MODEL_URLS.keys()
NET_CONFIG = {
"StarNet_S1": [24, [2, 2, 8, 3]],
"StarNet_S2": [32, [1, 2, 6, 2]],
"StarNet_S3": [32, [2, 2, 8, 4]],
"StarNet_S4": [32, [3, 3, 12, 5]],
}
class ConvBN(nn.Sequential):
def __init__(self,
in_planes,
out_planes,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
groups=1,
with_bn=True):
super().__init__()
self.add_sublayer(
name='conv',
sublayer=nn.Conv2D(
in_channels=in_planes,
out_channels=out_planes,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups))
if with_bn:
self.add_sublayer(
name='bn', sublayer=nn.BatchNorm2D(num_features=out_planes))
init_Constant = nn.initializer.Constant(value=1)
init_Constant(self.bn.weight)
init_Constant = nn.initializer.Constant(value=0)
init_Constant(self.bn.bias)
class Block(nn.Layer):
def __init__(self, dim, mlp_ratio=3, drop_path=0.0):
super().__init__()
self.dwconv = ConvBN(
dim, dim, 7, 1, (7 - 1) // 2, groups=dim, with_bn=True)
self.f1 = ConvBN(dim, mlp_ratio * dim, 1, with_bn=False)
self.f2 = ConvBN(dim, mlp_ratio * dim, 1, with_bn=False)
self.g = ConvBN(mlp_ratio * dim, dim, 1, with_bn=True)
self.dwconv2 = ConvBN(
dim, dim, 7, 1, (7 - 1) // 2, groups=dim, with_bn=False)
self.act = nn.ReLU6()
self.drop_path = (DropPath(drop_path)
if drop_path > 0. else nn.Identity())
def forward(self, x):
input = x
x = self.dwconv(x)
x1, x2 = self.f1(x), self.f2(x)
x = self.act(x1) * x2
x = self.dwconv2(self.g(x))
x = input + self.drop_path(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError("pretrained type is not available. ")
class StarNet(nn.Layer):
"""
StarNet: StarNet for Image Classification
Args:
base_dim: int, base dimension of the model, default 32.
depths: list, number of blocks in each stage, default [3, 3, 12, 5].
mlp_ratio: int, ratio of hidden dim to mlp_dim, default 4.
drop_path_rate: float, default 0.0, stochastic depth rate.
class_num: int, default 1000, number of classes.
"""
def __init__(self,
base_dim=32,
depths=[3, 3, 12, 5],
mlp_ratio=4,
drop_path_rate=0.0,
class_num=1000,
**kwargs):
super().__init__()
self.class_num = class_num
self.in_channel = 32
self.stem = nn.Sequential(
ConvBN(
3, self.in_channel, kernel_size=3, stride=2, padding=1),
nn.ReLU6())
dpr = [
x.item()
for x in paddle.linspace(
start=0, stop=drop_path_rate, num=sum(depths))
]
self.stages = nn.LayerList()
cur = 0
for i_layer in range(len(depths)):
embed_dim = base_dim * 2**i_layer
down_sampler = ConvBN(self.in_channel, embed_dim, 3, 2, 1)
self.in_channel = embed_dim
blocks = [
Block(self.in_channel, mlp_ratio, dpr[cur + i])
for i in range(depths[i_layer])
]
cur += depths[i_layer]
self.stages.append(nn.Sequential(down_sampler, *blocks))
self.norm = nn.BatchNorm2D(num_features=self.in_channel)
self.avgpool = nn.AdaptiveAvgPool2D(output_size=1)
self.head = nn.Linear(
in_features=self.in_channel, out_features=class_num)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear or nn.Conv2D):
pass
if isinstance(m, nn.Linear) and m.bias is not None:
init_Constant = nn.initializer.Constant(value=0)
init_Constant(m.bias)
elif isinstance(m, nn.LayerNorm or nn.BatchNorm2D):
init_Constant = nn.initializer.Constant(value=0)
init_Constant(m.bias)
init_Constant = nn.initializer.Constant(value=1.0)
init_Constant(m.weight)
def forward(self, x):
x = self.stem(x)
for stage in self.stages:
x = stage(x)
x = paddle.flatten(x=self.avgpool(self.norm(x)), start_axis=1)
return self.head(x)
def StarNet_S1(pretrained=False, use_ssld=False, **kwargs):
model = StarNet(*NET_CONFIG["StarNet_S1"], **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["StarNet_S1"], use_ssld)
return model
def StarNet_S2(pretrained=False, use_ssld=False, **kwargs):
model = StarNet(*NET_CONFIG["StarNet_S2"], **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["StarNet_S2"], use_ssld)
return model
def StarNet_S3(pretrained=False, use_ssld=False, **kwargs):
model = StarNet(*NET_CONFIG["StarNet_S3"], **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["StarNet_S3"], use_ssld)
return model
def StarNet_S4(pretrained=False, use_ssld=False, **kwargs):
model = StarNet(*NET_CONFIG["StarNet_S4"], **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["StarNet_S4"], use_ssld)
return model