PaddleClas/ppcls/utils/save_load.py
Tingquan Gao 56e8c5a992 Revert "mv model_saver to __init__()"
This reverts commit 0d7e595fc79dab16c96d8df75c428a0aa50050d1.
2023-03-14 16:47:13 +08:00

126 lines
5.0 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import errno
import os
import paddle
from . import logger
from .download import get_weights_path_from_url
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
def load_dygraph_pretrain(model, path=None):
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {}.pdparams does not "
"exists.".format(path))
param_state_dict = paddle.load(path + ".pdparams")
if isinstance(model, list):
for m in model:
if hasattr(m, 'set_dict'):
m.set_dict(param_state_dict)
else:
model.set_dict(param_state_dict)
logger.info("Finish load pretrained model from {}".format(path))
return
def load_dygraph_pretrain_from_url(model,
pretrained_url,
use_ssld=False,
use_imagenet22k_pretrained=False,
use_imagenet22kto1k_pretrained=False):
if use_ssld:
pretrained_url = pretrained_url.replace("_pretrained",
"_ssld_pretrained")
if use_imagenet22k_pretrained:
pretrained_url = pretrained_url.replace("_pretrained",
"_22k_pretrained")
if use_imagenet22kto1k_pretrained:
pretrained_url = pretrained_url.replace("_pretrained",
"_22kto1k_pretrained")
local_weight_path = get_weights_path_from_url(pretrained_url).replace(
".pdparams", "")
load_dygraph_pretrain(model, path=local_weight_path)
return
def load_distillation_model(model, pretrained_model):
logger.info("In distillation mode, teacher model will be "
"loaded firstly before student model.")
if not isinstance(pretrained_model, list):
pretrained_model = [pretrained_model]
teacher = model.teacher if hasattr(model,
"teacher") else model._layers.teacher
student = model.student if hasattr(model,
"student") else model._layers.student
load_dygraph_pretrain(teacher, path=pretrained_model[0])
logger.info("Finish initing teacher model from {}".format(
pretrained_model))
# load student model
if len(pretrained_model) >= 2:
load_dygraph_pretrain(student, path=pretrained_model[1])
logger.info("Finish initing student model from {}".format(
pretrained_model))
def init_model(config,
net,
optimizer=None,
loss: paddle.nn.Layer=None,
model_ema=None):
"""
load model from checkpoint or pretrained_model
"""
checkpoints = config.get('checkpoints')
if checkpoints and optimizer is not None:
assert os.path.exists(checkpoints + ".pdparams"), \
"Given dir {}.pdparams not exist.".format(checkpoints)
assert os.path.exists(checkpoints + ".pdopt"), \
"Given dir {}.pdopt not exist.".format(checkpoints)
# load state dict
opti_dict = paddle.load(checkpoints + ".pdopt")
para_dict = paddle.load(checkpoints + ".pdparams")
metric_dict = paddle.load(checkpoints + ".pdstates")
# set state dict
net.set_state_dict(para_dict)
loss.set_state_dict(para_dict)
for i in range(len(optimizer)):
optimizer[i].set_state_dict(opti_dict[i] if isinstance(
opti_dict, list) else opti_dict)
if model_ema is not None:
assert os.path.exists(checkpoints + ".ema.pdparams"), \
"Given dir {}.ema.pdparams not exist.".format(checkpoints)
para_ema_dict = paddle.load(checkpoints + ".ema.pdparams")
model_ema.module.set_state_dict(para_ema_dict)
logger.info("Finish load checkpoints from {}".format(checkpoints))
return metric_dict
pretrained_model = config.get('pretrained_model')
use_distillation = config.get('use_distillation', False)
if pretrained_model:
if use_distillation:
load_distillation_model(net, pretrained_model)
else: # common load
load_dygraph_pretrain(net, path=pretrained_model)
logger.info("Finish load pretrained model from {}".format(
pretrained_model))