PaddleClas/ppcls/modeling/architectures/layers.py

253 lines
8.5 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import warnings
import paddle.fluid as fluid
def initial_type(name,
input,
op_type,
fan_out,
init="google",
use_bias=False,
filter_size=0,
stddev=0.02):
if init == "kaiming":
if op_type == 'conv':
fan_in = input.shape[1] * filter_size * filter_size
elif op_type == 'deconv':
fan_in = fan_out * filter_size * filter_size
else:
if len(input.shape) > 2:
fan_in = input.shape[1] * input.shape[2] * input.shape[3]
else:
fan_in = input.shape[1]
bound = 1 / math.sqrt(fan_in)
param_attr = fluid.ParamAttr(
name=name + "_weights",
initializer=fluid.initializer.Uniform(
low=-bound, high=bound))
if use_bias == True:
bias_attr = fluid.ParamAttr(
name=name + '_offset',
initializer=fluid.initializer.Uniform(
low=-bound, high=bound))
else:
bias_attr = False
elif init == 'google':
n = filter_size * filter_size * fan_out
param_attr = fluid.ParamAttr(
name=name + "_weights",
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=math.sqrt(2.0 / n)))
if use_bias == True:
bias_attr = fluid.ParamAttr(
name=name + "_offset",
initializer=fluid.initializer.Constant(0.0))
else:
bias_attr = False
else:
param_attr = fluid.ParamAttr(
name=name + "_weights",
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=stddev))
if use_bias == True:
bias_attr = fluid.ParamAttr(
name=name + "_offset",
initializer=fluid.initializer.Constant(0.0))
else:
bias_attr = False
return param_attr, bias_attr
def cal_padding(img_size, stride, filter_size, dilation=1):
"""Calculate padding size."""
if img_size % stride == 0:
out_size = max(filter_size - stride, 0)
else:
out_size = max(filter_size - (img_size % stride), 0)
return out_size // 2, out_size - out_size // 2
def init_batch_norm_layer(name="batch_norm"):
param_attr = fluid.ParamAttr(
name=name + '_scale', initializer=fluid.initializer.Constant(1.0))
bias_attr = fluid.ParamAttr(
name=name + '_offset',
initializer=fluid.initializer.Constant(value=0.0))
return param_attr, bias_attr
def init_fc_layer(fout, name='fc'):
n = fout # fan-out
init_range = 1.0 / math.sqrt(n)
param_attr = fluid.ParamAttr(
name=name + '_weights',
initializer=fluid.initializer.UniformInitializer(
low=-init_range, high=init_range))
bias_attr = fluid.ParamAttr(
name=name + '_offset',
initializer=fluid.initializer.Constant(value=0.0))
return param_attr, bias_attr
def norm_layer(input, norm_type='batch_norm', name=None):
if norm_type == 'batch_norm':
param_attr = fluid.ParamAttr(
name=name + '_weights',
initializer=fluid.initializer.Constant(1.0))
bias_attr = fluid.ParamAttr(
name=name + '_offset',
initializer=fluid.initializer.Constant(value=0.0))
return fluid.layers.batch_norm(
input,
param_attr=param_attr,
bias_attr=bias_attr,
moving_mean_name=name + '_mean',
moving_variance_name=name + '_variance')
elif norm_type == 'instance_norm':
helper = fluid.layer_helper.LayerHelper("instance_norm", **locals())
dtype = helper.input_dtype()
epsilon = 1e-5
mean = fluid.layers.reduce_mean(input, dim=[2, 3], keep_dim=True)
var = fluid.layers.reduce_mean(
fluid.layers.square(input - mean), dim=[2, 3], keep_dim=True)
if name is not None:
scale_name = name + "_scale"
offset_name = name + "_offset"
scale_param = fluid.ParamAttr(
name=scale_name,
initializer=fluid.initializer.Constant(1.0),
trainable=True)
offset_param = fluid.ParamAttr(
name=offset_name,
initializer=fluid.initializer.Constant(0.0),
trainable=True)
scale = helper.create_parameter(
attr=scale_param, shape=input.shape[1:2], dtype=dtype)
offset = helper.create_parameter(
attr=offset_param, shape=input.shape[1:2], dtype=dtype)
tmp = fluid.layers.elementwise_mul(x=(input - mean), y=scale, axis=1)
tmp = tmp / fluid.layers.sqrt(var + epsilon)
tmp = fluid.layers.elementwise_add(tmp, offset, axis=1)
return tmp
else:
raise NotImplementedError("norm tyoe: [%s] is not support" % norm_type)
def conv2d(input,
num_filters=64,
filter_size=7,
stride=1,
stddev=0.02,
padding=0,
groups=None,
name="conv2d",
norm=None,
act=None,
relufactor=0.0,
use_bias=False,
padding_type=None,
initial="normal",
use_cudnn=True):
if padding != 0 and padding_type != None:
warnings.warn(
'padding value and padding type are set in the same time, and the final padding width and padding height are computed by padding_type'
)
param_attr, bias_attr = initial_type(
name=name,
input=input,
op_type='conv',
fan_out=num_filters,
init=initial,
use_bias=use_bias,
filter_size=filter_size,
stddev=stddev)
def get_padding(filter_size, stride=1, dilation=1):
padding = ((stride - 1) + dilation * (filter_size - 1)) // 2
return padding
need_crop = False
if padding_type == "SAME":
top_padding, bottom_padding = cal_padding(input.shape[2], stride,
filter_size)
left_padding, right_padding = cal_padding(input.shape[2], stride,
filter_size)
height_padding = bottom_padding
width_padding = right_padding
if top_padding != bottom_padding or left_padding != right_padding:
height_padding = top_padding + stride
width_padding = left_padding + stride
need_crop = True
padding = [height_padding, width_padding]
elif padding_type == "VALID":
height_padding = 0
width_padding = 0
padding = [height_padding, width_padding]
elif padding_type == "DYNAMIC":
padding = get_padding(filter_size, stride)
else:
padding = padding
conv = fluid.layers.conv2d(
input,
num_filters,
filter_size,
groups=groups,
name=name,
stride=stride,
padding=padding,
use_cudnn=use_cudnn,
param_attr=param_attr,
bias_attr=bias_attr)
if need_crop:
conv = conv[:, :, 1:, 1:]
if norm is not None:
conv = norm_layer(input=conv, norm_type=norm, name=name + "_norm")
if act == 'relu':
conv = fluid.layers.relu(conv, name=name + '_relu')
elif act == 'leaky_relu':
conv = fluid.layers.leaky_relu(
conv, alpha=relufactor, name=name + '_leaky_relu')
elif act == 'tanh':
conv = fluid.layers.tanh(conv, name=name + '_tanh')
elif act == 'sigmoid':
conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid')
elif act == 'swish':
conv = fluid.layers.swish(conv, name=name + '_swish')
elif act == 'relu6':
conv = fluid.layers.relu6(conv, name=name + '_relu6')
elif act == None:
conv = conv
else:
raise NotImplementedError("activation: [%s] is not support" % act)
return conv