PaddleClas/ppcls/modeling/architectures/resnet_acnet.py

333 lines
11 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
__all__ = [
"ResNet18_ACNet", "ResNet34_ACNet", "ResNet50_ACNet", "ResNet101_ACNet",
"ResNet152_ACNet"
]
class ResNetACNet(object):
""" ACNet """
def __init__(self, layers=50, deploy=False):
"""init"""
self.layers = layers
self.deploy = deploy
def net(self, input, class_dim=1000):
"""model"""
layers = self.layers
supported_layers = [18, 34, 50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_filters = [64, 128, 256, 512]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name="conv1")
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
if layers >= 50:
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
name=conv_name)
else:
for block in range(len(depth)):
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.basic_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
is_first=block == i == 0,
name=conv_name)
pool = fluid.layers.pool2d(
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
return out
def conv_bn_layer(self, **kwargs):
"""
conv_bn_layer
"""
if kwargs['filter_size'] == 1:
return self.conv_bn_layer_ori(**kwargs)
else:
return self.conv_bn_layer_ac(**kwargs)
# conv bn+relu
def conv_bn_layer_ori(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
"""
standard convbn
used for 1x1 convbn in acnet
"""
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.conv2d.output.1')
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
name=bn_name + '.output.1',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance', )
# conv bn+relu
def conv_bn_layer_ac(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
""" ACNet conv bn """
padding = (filter_size - 1) // 2
square_conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
act=act if self.deploy else None,
param_attr=ParamAttr(name=name + "_acsquare_weights"),
bias_attr=ParamAttr(name=name + "_acsquare_bias")
if self.deploy else False,
name=name + '.acsquare.conv2d.output.1')
if self.deploy:
return square_conv
else:
ver_conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=(filter_size, 1),
stride=stride,
padding=(padding, 0),
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_acver_weights"),
bias_attr=False,
name=name + '.acver.conv2d.output.1')
hor_conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=(1, filter_size),
stride=stride,
padding=(0, padding),
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_achor_weights"),
bias_attr=False,
name=name + '.achor.conv2d.output.1')
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
square_bn = fluid.layers.batch_norm(
input=square_conv,
act=None,
name=bn_name + '.acsquare.output.1',
param_attr=ParamAttr(name=bn_name + '_acsquare_scale'),
bias_attr=ParamAttr(bn_name + '_acsquare_offset'),
moving_mean_name=bn_name + '_acsquare_mean',
moving_variance_name=bn_name + '_acsquare_variance', )
ver_bn = fluid.layers.batch_norm(
input=ver_conv,
act=None,
name=bn_name + '.acver.output.1',
param_attr=ParamAttr(name=bn_name + '_acver_scale'),
bias_attr=ParamAttr(bn_name + '_acver_offset'),
moving_mean_name=bn_name + '_acver_mean',
moving_variance_name=bn_name + '_acver_variance', )
hor_bn = fluid.layers.batch_norm(
input=hor_conv,
act=None,
name=bn_name + '.achor.output.1',
param_attr=ParamAttr(name=bn_name + '_achor_scale'),
bias_attr=ParamAttr(bn_name + '_achor_offset'),
moving_mean_name=bn_name + '_achor_mean',
moving_variance_name=bn_name + '_achor_variance', )
return fluid.layers.elementwise_add(
x=square_bn, y=ver_bn + hor_bn, act=act)
def shortcut(self, input, ch_out, stride, is_first, name):
""" shortcut """
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1 or is_first is True:
return self.conv_bn_layer(
input=input,
num_filters=ch_out,
filter_size=1,
stride=stride,
name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, name):
"""" bottleneck_block """
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input,
num_filters * 4,
stride,
is_first=False,
name=name + "_branch1")
return fluid.layers.elementwise_add(
x=short, y=conv2, act='relu', name=name + ".add.output.5")
def basic_block(self, input, num_filters, stride, is_first, name):
""" basic_block """
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=3,
act='relu',
stride=stride,
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
act=None,
name=name + "_branch2b")
short = self.shortcut(
input, num_filters, stride, is_first, name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
def ResNet18_ACNet(deploy=False):
"""ResNet18 + ACNet"""
model = ResNetACNet(layers=18, deploy=deploy)
return model
def ResNet34_ACNet(deploy=False):
"""ResNet34 + ACNet"""
model = ResNetACNet(layers=34, deploy=deploy)
return model
def ResNet50_ACNet(deploy=False):
"""ResNet50 + ACNet"""
model = ResNetACNet(layers=50, deploy=deploy)
return model
def ResNet101_ACNet(deploy=False):
"""ResNet101 + ACNet"""
model = ResNetACNet(layers=101, deploy=deploy)
return model
def ResNet152_ACNet(deploy=False):
"""ResNet152 + ACNet"""
model = ResNetACNet(layers=152, deploy=deploy)
return model