PaddleClas/tools/search_strategy.py

113 lines
4.3 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
import subprocess
import numpy as np
from ppcls.utils import config
def get_result(log_dir):
log_file = "{}/train.log".format(log_dir)
with open(log_file, "r") as f:
raw = f.read()
res = float(raw.split("best metric: ")[-1].split("]")[0])
return res
def search_train(search_list, base_program, base_output_dir, search_key,
config_replace_value, model_name, search_times=1):
best_res = 0.
best = search_list[0]
all_result = {}
for search_i in search_list:
program = base_program.copy()
for v in config_replace_value:
program += ["-o", "{}={}".format(v, search_i)]
if v == "Arch.name":
model_name = search_i
res_list = []
for j in range(search_times):
output_dir = "{}/{}_{}_{}".format(base_output_dir, search_key, search_i, j).replace(".", "_")
program += ["-o", "Global.output_dir={}".format(output_dir)]
process = subprocess.Popen(program)
process.communicate()
res = get_result("{}/{}".format(output_dir, model_name))
res_list.append(res)
all_result[str(search_i)] = res_list
if np.mean(res_list) > best_res:
best = search_i
best_res = np.mean(res_list)
all_result["best"] = best
return all_result
def search_strategy():
args = config.parse_args()
configs = config.get_config(args.config, overrides=args.override, show=False)
base_config_file = configs["base_config_file"]
distill_config_file = configs["distill_config_file"]
model_name = config.get_config(base_config_file)["Arch"]["name"]
gpus = configs["gpus"]
gpus = ",".join([str(i) for i in gpus])
base_program = ["python3.7", "-m", "paddle.distributed.launch", "--gpus={}".format(gpus),
"tools/train.py", "-c", base_config_file]
base_output_dir = configs["output_dir"]
search_times = configs["search_times"]
search_dict = configs.get("search_dict")
all_results = {}
for search_i in search_dict:
search_key = search_i["search_key"]
search_values = search_i["search_values"]
replace_config = search_i["replace_config"]
res = search_train(search_values, base_program, base_output_dir,
search_key, replace_config, model_name, search_times)
all_results[search_key] = res
best = res.get("best")
for v in replace_config:
base_program += ["-o", "{}={}".format(v, best)]
teacher_configs = configs.get("teacher", None)
if teacher_configs is not None:
teacher_program = base_program.copy()
# remove incompatible keys
teacher_rm_keys = teacher_configs["rm_keys"]
rm_indices = []
for rm_k in teacher_rm_keys:
for ind, ki in enumerate(base_program):
if rm_k in ki:
rm_indices.append(ind)
for rm_index in rm_indices[::-1]:
teacher_program.pop(rm_index)
teacher_program.pop(rm_index-1)
replace_config = ["Arch.name"]
teacher_list = teacher_configs["search_values"]
res = search_train(teacher_list, teacher_program, base_output_dir, "teacher", replace_config, model_name)
all_results["teacher"] = res
best = res.get("best")
t_pretrained = "{}/{}_{}_0/{}/best_model".format(base_output_dir, "teacher", best, best)
base_program += ["-o", "Arch.models.0.Teacher.name={}".format(best),
"-o", "Arch.models.0.Teacher.pretrained={}".format(t_pretrained)]
output_dir = "{}/search_res".format(base_output_dir)
base_program += ["-o", "Global.output_dir={}".format(output_dir)]
final_replace = configs.get('final_replace')
for i in range(len(base_program)):
base_program[i] = base_program[i].replace(base_config_file, distill_config_file)
for k in final_replace:
v = final_replace[k]
base_program[i] = base_program[i].replace(k, v)
process = subprocess.Popen(base_program)
process.communicate()
print(all_results, base_program)
if __name__ == '__main__':
search_strategy()