PaddleClas/ppcls/data/dataloader/vehicle_dataset.py

142 lines
5.0 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import paddle
from paddle.io import Dataset
import os
import cv2
from ppcls.data import preprocess
from ppcls.data.preprocess import transform
from ppcls.utils import logger
from .common_dataset import create_operators
class CompCars(Dataset):
def __init__(self,
image_root,
cls_label_path,
label_root=None,
transform_ops=None,
bbox_crop=False):
self._img_root = image_root
self._cls_path = cls_label_path
self._label_root = label_root
if transform_ops:
self._transform_ops = create_operators(transform_ops)
self._bbox_crop = bbox_crop
self._dtype = paddle.get_default_dtype()
self._load_anno()
def _load_anno(self):
assert os.path.exists(self._cls_path)
assert os.path.exists(self._img_root)
if self._bbox_crop:
assert os.path.exists(self._label_root)
self.images = []
self.labels = []
self.bboxes = []
with open(self._cls_path) as fd:
lines = fd.readlines()
for l in lines:
l = l.strip().split()
if not self._bbox_crop:
self.images.append(os.path.join(self._img_root, l[0]))
self.labels.append(int(l[1]))
else:
label_path = os.path.join(self._label_root,
l[0].split('.')[0] + '.txt')
assert os.path.exists(label_path)
with open(label_path) as f:
bbox = f.readlines()[-1].strip().split()
bbox = [int(x) for x in bbox]
self.images.append(os.path.join(self._img_root, l[0]))
self.labels.append(int(l[1]))
self.bboxes.append(bbox)
assert os.path.exists(self.images[-1])
def __getitem__(self, idx):
img = cv2.imread(self.images[idx])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if self._bbox_crop:
bbox = self.bboxes[idx]
img = img[bbox[1]:bbox[3], bbox[0]:bbox[2], :]
if self._transform_ops:
img = transform(img, self._transform_ops)
img = img.transpose((2, 0, 1))
return (img, self.labels[idx])
def __len__(self):
return len(self.images)
@property
def class_num(self):
return len(set(self.labels))
class VeriWild(Dataset):
def __init__(self, image_root, cls_label_path, transform_ops=None):
self._img_root = image_root
self._cls_path = cls_label_path
if transform_ops:
self._transform_ops = create_operators(transform_ops)
self._dtype = paddle.get_default_dtype()
self._load_anno()
def _load_anno(self):
assert os.path.exists(
self._cls_path), f"path {self._cls_path} does not exist."
assert os.path.exists(
self._img_root), f"path {self._img_root} does not exist."
self.images = []
self.labels = []
self.cameras = []
with open(self._cls_path) as fd:
lines = fd.readlines()
for line in lines:
line = line.strip().split()
self.images.append(os.path.join(self._img_root, line[0]))
self.labels.append(np.int64(line[1]))
if len(line) >= 3:
self.cameras.append(np.int64(line[2]))
assert os.path.exists(self.images[-1])
self.has_camera = len(self.cameras) > 0
def __getitem__(self, idx):
try:
with open(self.images[idx], 'rb') as f:
img = f.read()
if self._transform_ops:
img = transform(img, self._transform_ops)
img = img.transpose((2, 0, 1))
if self.has_camera:
return (img, self.labels[idx], self.cameras[idx])
else:
return (img, self.labels[idx])
except Exception as ex:
logger.error("Exception occured when parse line: {} with msg: {}".
format(self.images[idx], ex))
rnd_idx = np.random.randint(self.__len__())
return self.__getitem__(rnd_idx)
def __len__(self):
return len(self.images)
@property
def class_num(self):
return len(set(self.labels))