PaddleClas/ppcls/modeling/architectures/efficientnet.py

617 lines
21 KiB
Python

#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import re
import math
import copy
import paddle.fluid as fluid
from .layers import conv2d, init_batch_norm_layer, init_fc_layer
__all__ = [
'EfficientNet', 'EfficientNetB0', 'EfficientNetB1', 'EfficientNetB2',
'EfficientNetB3', 'EfficientNetB4', 'EfficientNetB5', 'EfficientNetB6',
'EfficientNetB7'
]
GlobalParams = collections.namedtuple('GlobalParams', [
'batch_norm_momentum',
'batch_norm_epsilon',
'dropout_rate',
'num_classes',
'width_coefficient',
'depth_coefficient',
'depth_divisor',
'min_depth',
'drop_connect_rate',
])
BlockArgs = collections.namedtuple('BlockArgs', [
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
'expand_ratio', 'id_skip', 'stride', 'se_ratio'
])
GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields)
def efficientnet_params(model_name):
""" Map EfficientNet model name to parameter coefficients. """
params_dict = {
# Coefficients: width,depth,resolution,dropout
'efficientnet-b0': (1.0, 1.0, 224, 0.2),
'efficientnet-b1': (1.0, 1.1, 240, 0.2),
'efficientnet-b2': (1.1, 1.2, 260, 0.3),
'efficientnet-b3': (1.2, 1.4, 300, 0.3),
'efficientnet-b4': (1.4, 1.8, 380, 0.4),
'efficientnet-b5': (1.6, 2.2, 456, 0.4),
'efficientnet-b6': (1.8, 2.6, 528, 0.5),
'efficientnet-b7': (2.0, 3.1, 600, 0.5),
}
return params_dict[model_name]
def efficientnet(width_coefficient=None,
depth_coefficient=None,
dropout_rate=0.2,
drop_connect_rate=0.2):
""" Get block arguments according to parameter and coefficients. """
blocks_args = [
'r1_k3_s11_e1_i32_o16_se0.25',
'r2_k3_s22_e6_i16_o24_se0.25',
'r2_k5_s22_e6_i24_o40_se0.25',
'r3_k3_s22_e6_i40_o80_se0.25',
'r3_k5_s11_e6_i80_o112_se0.25',
'r4_k5_s22_e6_i112_o192_se0.25',
'r1_k3_s11_e6_i192_o320_se0.25',
]
blocks_args = BlockDecoder.decode(blocks_args)
global_params = GlobalParams(
batch_norm_momentum=0.99,
batch_norm_epsilon=1e-3,
dropout_rate=dropout_rate,
drop_connect_rate=drop_connect_rate,
num_classes=1000,
width_coefficient=width_coefficient,
depth_coefficient=depth_coefficient,
depth_divisor=8,
min_depth=None)
return blocks_args, global_params
def get_model_params(model_name, override_params):
""" Get the block args and global params for a given model """
if model_name.startswith('efficientnet'):
w, d, _, p = efficientnet_params(model_name)
blocks_args, global_params = efficientnet(
width_coefficient=w, depth_coefficient=d, dropout_rate=p)
else:
raise NotImplementedError('model name is not pre-defined: %s' %
model_name)
if override_params:
global_params = global_params._replace(**override_params)
return blocks_args, global_params
def round_filters(filters, global_params):
""" Calculate and round number of filters based on depth multiplier. """
multiplier = global_params.width_coefficient
if not multiplier:
return filters
divisor = global_params.depth_divisor
min_depth = global_params.min_depth
filters *= multiplier
min_depth = min_depth or divisor
new_filters = max(min_depth,
int(filters + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * filters: # prevent rounding by more than 10%
new_filters += divisor
return int(new_filters)
def round_repeats(repeats, global_params):
""" Round number of filters based on depth multiplier. """
multiplier = global_params.depth_coefficient
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
class EfficientNet():
def __init__(self,
name='b0',
padding_type='SAME',
override_params=None,
is_test=False,
use_se=True):
valid_names = ['b' + str(i) for i in range(8)]
assert name in valid_names, 'efficient name should be in b0~b7'
model_name = 'efficientnet-' + name
self._blocks_args, self._global_params = get_model_params(
model_name, override_params)
self._bn_mom = self._global_params.batch_norm_momentum
self._bn_eps = self._global_params.batch_norm_epsilon
self.is_test = is_test
self.padding_type = padding_type
self.use_se = use_se
def net(self, input, class_dim=1000, is_test=False):
conv = self.extract_features(input, is_test=is_test)
out_channels = round_filters(1280, self._global_params)
conv = self.conv_bn_layer(
conv,
num_filters=out_channels,
filter_size=1,
bn_act='swish',
bn_mom=self._bn_mom,
bn_eps=self._bn_eps,
padding_type=self.padding_type,
name='',
conv_name='_conv_head',
bn_name='_bn1')
pool = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True, use_cudnn=False)
if self._global_params.dropout_rate:
pool = fluid.layers.dropout(
pool,
self._global_params.dropout_rate,
dropout_implementation='upscale_in_train')
param_attr, bias_attr = init_fc_layer(class_dim, '_fc')
out = fluid.layers.fc(pool,
class_dim,
name='_fc',
param_attr=param_attr,
bias_attr=bias_attr)
return out
def _drop_connect(self, inputs, prob, is_test):
if is_test:
return inputs
keep_prob = 1.0 - prob
random_tensor = keep_prob + fluid.layers.uniform_random_batch_size_like(
inputs, [-1, 1, 1, 1], min=0., max=1.)
binary_tensor = fluid.layers.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
def _expand_conv_norm(self, inputs, block_args, is_test, name=None):
# Expansion phase
oup = block_args.input_filters * block_args.expand_ratio # number of output channels
if block_args.expand_ratio != 1:
conv = self.conv_bn_layer(
inputs,
num_filters=oup,
filter_size=1,
bn_act=None,
bn_mom=self._bn_mom,
bn_eps=self._bn_eps,
padding_type=self.padding_type,
name=name,
conv_name=name + '_expand_conv',
bn_name='_bn0')
return conv
def _depthwise_conv_norm(self, inputs, block_args, is_test, name=None):
k = block_args.kernel_size
s = block_args.stride
if isinstance(s, list) or isinstance(s, tuple):
s = s[0]
oup = block_args.input_filters * block_args.expand_ratio # number of output channels
conv = self.conv_bn_layer(
inputs,
num_filters=oup,
filter_size=k,
stride=s,
num_groups=oup,
bn_act=None,
padding_type=self.padding_type,
bn_mom=self._bn_mom,
bn_eps=self._bn_eps,
name=name,
use_cudnn=False,
conv_name=name + '_depthwise_conv',
bn_name='_bn1')
return conv
def _project_conv_norm(self, inputs, block_args, is_test, name=None):
final_oup = block_args.output_filters
conv = self.conv_bn_layer(
inputs,
num_filters=final_oup,
filter_size=1,
bn_act=None,
padding_type=self.padding_type,
bn_mom=self._bn_mom,
bn_eps=self._bn_eps,
name=name,
conv_name=name + '_project_conv',
bn_name='_bn2')
return conv
def conv_bn_layer(self,
input,
filter_size,
num_filters,
stride=1,
num_groups=1,
padding_type="SAME",
conv_act=None,
bn_act='swish',
use_cudnn=True,
use_bn=True,
bn_mom=0.9,
bn_eps=1e-05,
use_bias=False,
name=None,
conv_name=None,
bn_name=None):
conv = conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
groups=num_groups,
act=conv_act,
padding_type=padding_type,
use_cudnn=use_cudnn,
name=conv_name,
use_bias=use_bias)
if use_bn == False:
return conv
else:
bn_name = name + bn_name
param_attr, bias_attr = init_batch_norm_layer(bn_name)
return fluid.layers.batch_norm(
input=conv,
act=bn_act,
momentum=bn_mom,
epsilon=bn_eps,
name=bn_name,
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance',
param_attr=param_attr,
bias_attr=bias_attr)
def _conv_stem_norm(self, inputs, is_test):
out_channels = round_filters(32, self._global_params)
bn = self.conv_bn_layer(
inputs,
num_filters=out_channels,
filter_size=3,
stride=2,
bn_act=None,
bn_mom=self._bn_mom,
padding_type=self.padding_type,
bn_eps=self._bn_eps,
name='',
conv_name='_conv_stem',
bn_name='_bn0')
return bn
def mb_conv_block(self,
inputs,
block_args,
is_test=False,
drop_connect_rate=None,
name=None):
# Expansion and Depthwise Convolution
oup = block_args.input_filters * block_args.expand_ratio # number of output channels
has_se = self.use_se and (block_args.se_ratio is not None) and (
0 < block_args.se_ratio <= 1)
id_skip = block_args.id_skip # skip connection and drop connect
conv = inputs
if block_args.expand_ratio != 1:
conv = fluid.layers.swish(
self._expand_conv_norm(conv, block_args, is_test, name))
conv = fluid.layers.swish(
self._depthwise_conv_norm(conv, block_args, is_test, name))
# Squeeze and Excitation
if has_se:
num_squeezed_channels = max(
1, int(block_args.input_filters * block_args.se_ratio))
conv = self.se_block(conv, num_squeezed_channels, oup, name)
conv = self._project_conv_norm(conv, block_args, is_test, name)
# Skip connection and drop connect
input_filters, output_filters = block_args.input_filters, block_args.output_filters
if id_skip and block_args.stride == 1 and input_filters == output_filters:
if drop_connect_rate:
conv = self._drop_connect(conv, drop_connect_rate,
self.is_test)
conv = fluid.layers.elementwise_add(conv, inputs)
return conv
def se_block(self, inputs, num_squeezed_channels, oup, name):
x_squeezed = fluid.layers.pool2d(
input=inputs,
pool_type='avg',
global_pooling=True,
use_cudnn=False)
x_squeezed = conv2d(
x_squeezed,
num_filters=num_squeezed_channels,
filter_size=1,
use_bias=True,
padding_type=self.padding_type,
act='swish',
name=name + '_se_reduce')
x_squeezed = conv2d(
x_squeezed,
num_filters=oup,
filter_size=1,
use_bias=True,
padding_type=self.padding_type,
name=name + '_se_expand')
se_out = inputs * fluid.layers.sigmoid(x_squeezed)
return se_out
def extract_features(self, inputs, is_test):
""" Returns output of the final convolution layer """
conv = fluid.layers.swish(
self._conv_stem_norm(
inputs, is_test=is_test))
block_args_copy = copy.deepcopy(self._blocks_args)
idx = 0
block_size = 0
for block_arg in block_args_copy:
block_arg = block_arg._replace(
input_filters=round_filters(block_arg.input_filters,
self._global_params),
output_filters=round_filters(block_arg.output_filters,
self._global_params),
num_repeat=round_repeats(block_arg.num_repeat,
self._global_params))
block_size += 1
for _ in range(block_arg.num_repeat - 1):
block_size += 1
for block_args in self._blocks_args:
# Update block input and output filters based on depth multiplier.
block_args = block_args._replace(
input_filters=round_filters(block_args.input_filters,
self._global_params),
output_filters=round_filters(block_args.output_filters,
self._global_params),
num_repeat=round_repeats(block_args.num_repeat,
self._global_params))
# The first block needs to take care of stride and filter size increase.
drop_connect_rate = self._global_params.drop_connect_rate
if drop_connect_rate:
drop_connect_rate *= float(idx) / block_size
conv = self.mb_conv_block(conv, block_args, is_test,
drop_connect_rate,
'_blocks.' + str(idx) + '.')
idx += 1
if block_args.num_repeat > 1:
block_args = block_args._replace(
input_filters=block_args.output_filters, stride=1)
for _ in range(block_args.num_repeat - 1):
drop_connect_rate = self._global_params.drop_connect_rate
if drop_connect_rate:
drop_connect_rate *= float(idx) / block_size
conv = self.mb_conv_block(conv, block_args, is_test,
drop_connect_rate,
'_blocks.' + str(idx) + '.')
idx += 1
return conv
def shortcut(self, input, data_residual):
return fluid.layers.elementwise_add(input, data_residual)
class BlockDecoder(object):
""" Block Decoder for readability, straight from the official TensorFlow repository """
@staticmethod
def _decode_block_string(block_string):
""" Gets a block through a string notation of arguments. """
assert isinstance(block_string, str)
ops = block_string.split('_')
options = {}
for op in ops:
splits = re.split(r'(\d.*)', op)
if len(splits) >= 2:
key, value = splits[:2]
options[key] = value
# Check stride
assert (
('s' in options and len(options['s']) == 1) or
(len(options['s']) == 2 and options['s'][0] == options['s'][1]))
return BlockArgs(
kernel_size=int(options['k']),
num_repeat=int(options['r']),
input_filters=int(options['i']),
output_filters=int(options['o']),
expand_ratio=int(options['e']),
id_skip=('noskip' not in block_string),
se_ratio=float(options['se']) if 'se' in options else None,
stride=[int(options['s'][0])])
@staticmethod
def _encode_block_string(block):
"""Encodes a block to a string."""
args = [
'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' %
(block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio,
'i%d' % block.input_filters, 'o%d' % block.output_filters
]
if 0 < block.se_ratio <= 1:
args.append('se%s' % block.se_ratio)
if block.id_skip is False:
args.append('noskip')
return '_'.join(args)
@staticmethod
def decode(string_list):
"""
Decodes a list of string notations to specify blocks inside the network.
:param string_list: a list of strings, each string is a notation of block
:return: a list of BlockArgs namedtuples of block args
"""
assert isinstance(string_list, list)
blocks_args = []
for block_string in string_list:
blocks_args.append(BlockDecoder._decode_block_string(block_string))
return blocks_args
@staticmethod
def encode(blocks_args):
"""
Encodes a list of BlockArgs to a list of strings.
:param blocks_args: a list of BlockArgs namedtuples of block args
:return: a list of strings, each string is a notation of block
"""
block_strings = []
for block in blocks_args:
block_strings.append(BlockDecoder._encode_block_string(block))
return block_strings
def EfficientNetB0(is_test=False,
padding_type='SAME',
override_params=None,
use_se=True):
model = EfficientNet(
name='b0',
is_test=is_test,
padding_type=padding_type,
override_params=override_params,
use_se=use_se)
return model
def EfficientNetB1(is_test=False,
padding_type='SAME',
override_params=None,
use_se=True):
model = EfficientNet(
name='b1',
is_test=is_test,
padding_type=padding_type,
override_params=override_params,
use_se=use_se)
return model
def EfficientNetB2(is_test=False,
padding_type='SAME',
override_params=None,
use_se=True):
model = EfficientNet(
name='b2',
is_test=is_test,
padding_type=padding_type,
override_params=override_params,
use_se=use_se)
return model
def EfficientNetB3(is_test=False,
padding_type='SAME',
override_params=None,
use_se=True):
model = EfficientNet(
name='b3',
is_test=is_test,
padding_type=padding_type,
override_params=override_params,
use_se=use_se)
return model
def EfficientNetB4(is_test=False,
padding_type='SAME',
override_params=None,
use_se=True):
model = EfficientNet(
name='b4',
is_test=is_test,
padding_type=padding_type,
override_params=override_params,
use_se=use_se)
return model
def EfficientNetB5(is_test=False,
padding_type='SAME',
override_params=None,
use_se=True):
model = EfficientNet(
name='b5',
is_test=is_test,
padding_type=padding_type,
override_params=override_params,
use_se=use_se)
return model
def EfficientNetB6(is_test=False,
padding_type='SAME',
override_params=None,
use_se=True):
model = EfficientNet(
name='b6',
is_test=is_test,
padding_type=padding_type,
override_params=override_params,
use_se=use_se)
return model
def EfficientNetB7(is_test=False,
padding_type='SAME',
override_params=None,
use_se=True):
model = EfficientNet(
name='b7',
is_test=is_test,
padding_type=padding_type,
override_params=override_params,
use_se=use_se)
return model