PaddleClas/ppcls/data/reader.py

307 lines
9.1 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import random
import imghdr
import os
import signal
from paddle.io import Dataset, DataLoader, DistributedBatchSampler
from . import imaug
from .imaug import transform
from ppcls.utils import logger
trainers_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
trainer_id = int(os.environ.get("PADDLE_TRAINER_ID", 0))
class ModeException(Exception):
"""
ModeException
"""
def __init__(self, message='', mode=''):
message += "\nOnly the following 3 modes are supported: " \
"train, valid, test. Given mode is {}".format(mode)
super(ModeException, self).__init__(message)
class SampleNumException(Exception):
"""
SampleNumException
"""
def __init__(self, message='', sample_num=0, batch_size=1):
message += "\nError: The number of the whole data ({}) " \
"is smaller than the batch_size ({}), and drop_last " \
"is turnning on, so nothing will feed in program, " \
"Terminated now. Please reset batch_size to a smaller " \
"number or feed more data!".format(sample_num, batch_size)
super(SampleNumException, self).__init__(message)
class ShuffleSeedException(Exception):
"""
ShuffleSeedException
"""
def __init__(self, message=''):
message += "\nIf trainers_num > 1, the shuffle_seed must be set, " \
"because the order of batch data generated by reader " \
"must be the same in the respective processes."
super(ShuffleSeedException, self).__init__(message)
def check_params(params):
"""
check params to avoid unexpect errors
Args:
params(dict):
"""
if 'shuffle_seed' not in params:
params['shuffle_seed'] = None
if trainers_num > 1 and params['shuffle_seed'] is None:
raise ShuffleSeedException()
data_dir = params.get('data_dir', '')
assert os.path.isdir(data_dir), \
"{} doesn't exist, please check datadir path".format(data_dir)
if params['mode'] != 'test':
file_list = params.get('file_list', '')
assert os.path.isfile(file_list), \
"{} doesn't exist, please check file list path".format(file_list)
def create_file_list(params):
"""
if mode is test, create the file list
Args:
params(dict):
"""
data_dir = params.get('data_dir', '')
params['file_list'] = ".tmp.txt"
imgtype_list = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff'}
with open(params['file_list'], "w") as fout:
tmp_file_list = os.listdir(data_dir)
for file_name in tmp_file_list:
file_path = os.path.join(data_dir, file_name)
if imghdr.what(file_path) not in imgtype_list:
continue
fout.write(file_name + " 0" + "\n")
def shuffle_lines(full_lines, seed=None):
"""
random shuffle lines
Args:
full_lines(list):
seed(int): random seed
"""
if seed is not None:
np.random.RandomState(seed).shuffle(full_lines)
else:
np.random.shuffle(full_lines)
return full_lines
def get_file_list(params):
"""
read label list from file and shuffle the list
Args:
params(dict):
"""
if params['mode'] == 'test':
create_file_list(params)
with open(params['file_list']) as flist:
full_lines = [line.strip() for line in flist]
if params["mode"] == "train":
full_lines = shuffle_lines(full_lines, seed=params['shuffle_seed'])
return full_lines
def create_operators(params):
"""
create operators based on the config
Args:
params(list): a dict list, used to create some operators
"""
assert isinstance(params, list), ('operator config should be a list')
ops = []
for operator in params:
assert isinstance(operator,
dict) and len(operator) == 1, "yaml format error"
op_name = list(operator)[0]
param = {} if operator[op_name] is None else operator[op_name]
op = getattr(imaug, op_name)(**param)
ops.append(op)
return ops
def term_mp(sig_num, frame):
""" kill all child processes
"""
pid = os.getpid()
pgid = os.getpgid(os.getpid())
logger.info("main proc {} exit, kill process group "
"{}".format(pid, pgid))
os.killpg(pgid, signal.SIGKILL)
return
class CommonDataset(Dataset):
def __init__(self, params):
self.params = params
self.mode = params.get("mode", "train")
self.full_lines = get_file_list(params)
self.delimiter = params.get('delimiter', ' ')
self.ops = create_operators(params['transforms'])
self.num_samples = len(self.full_lines)
return
def __getitem__(self, idx):
try:
line = self.full_lines[idx]
img_path, label = line.split(self.delimiter)
img_path = os.path.join(self.params['data_dir'], img_path)
with open(img_path, 'rb') as f:
img = f.read()
return (transform(img, self.ops), int(label))
except Exception as e:
logger.error("data read faild: {}, exception info: {}".format(line,
e))
return self.__getitem__(random.randint(0, len(self)))
def __len__(self):
return self.num_samples
class MultiLabelDataset(Dataset):
"""
Define dataset class for multilabel image classification
"""
def __init__(self, params):
self.params = params
self.mode = params.get("mode", "train")
self.full_lines = get_file_list(params)
self.delimiter = params.get("delimiter", "\t")
self.ops = create_operators(params["transforms"])
self.num_samples = len(self.full_lines)
return
def __getitem__(self, idx):
try:
line = self.full_lines[idx]
img_path, label_str = line.split(self.delimiter)
img_path = os.path.join(self.params["data_dir"], img_path)
with open(img_path, "rb") as f:
img = f.read()
labels = label_str.split(',')
labels = [int(i) for i in labels]
return (transform(img, self.ops), np.array(labels).astype("float32"))
except Exception as e:
logger.error("data read failed: {}, exception info: {}".format(line, e))
return self.__getitem__(random.randint(0, len(self)))
def __len__(self):
return self.num_samples
class Reader:
"""
Create a reader for trainning/validate/test
Args:
config(dict): arguments
mode(str): train or val or test
seed(int): random seed used to generate same sequence in each trainer
Returns:
the specific reader
"""
def __init__(self, config, mode='train', places=None):
try:
self.params = config[mode.upper()]
except KeyError:
raise ModeException(mode=mode)
use_mix = config.get('use_mix')
self.params['mode'] = mode
self.shuffle = mode == "train"
self.collate_fn = None
self.batch_ops = []
if use_mix and mode == "train":
self.batch_ops = create_operators(self.params['mix'])
self.collate_fn = self.mix_collate_fn
self.places = places
self.multilabel = config.get("multilabel", False)
def mix_collate_fn(self, batch):
batch = transform(batch, self.batch_ops)
# batch each field
slots = []
for items in batch:
for i, item in enumerate(items):
if len(slots) < len(items):
slots.append([item])
else:
slots[i].append(item)
return [np.stack(slot, axis=0) for slot in slots]
def __call__(self):
batch_size = int(self.params['batch_size']) // trainers_num
if self.multilabel:
dataset = MultiLabelDataset(self.params)
else:
dataset = CommonDataset(self.params)
is_train = self.params['mode'] == "train"
batch_sampler = DistributedBatchSampler(
dataset,
batch_size=batch_size,
shuffle=self.shuffle and is_train,
drop_last=is_train)
loader = DataLoader(
dataset,
batch_sampler=batch_sampler,
collate_fn=self.collate_fn if is_train else None,
places=self.places,
return_list=True,
num_workers=self.params["num_workers"])
return loader
signal.signal(signal.SIGINT, term_mp)
signal.signal(signal.SIGTERM, term_mp)