PaddleClas/tools/infer/infer.py

90 lines
3.3 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import cv2
import os
import sys
import paddle
import paddle.nn.functional as F
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
from ppcls.utils.save_load import load_dygraph_pretrain
from ppcls.utils import logger
from ppcls.modeling import architectures
from utils import parse_args, get_image_list, preprocess, postprocess, save_prelabel_results
def main():
args = parse_args()
# assign the place
place = paddle.set_device('gpu' if args.use_gpu else 'cpu')
multilabel = True if args.multilabel else False
net = architectures.__dict__[args.model](class_dim=args.class_num)
load_dygraph_pretrain(net, args.pretrained_model, args.load_static_weights)
image_list = get_image_list(args.image_file)
batch_input_list = []
img_path_list = []
cnt = 0
for idx, img_path in enumerate(image_list):
img = cv2.imread(img_path)
if img is None:
logger.warning(
"Image file failed to read and has been skipped. The path: {}".
format(img_path))
continue
else:
img = img[:, :, ::-1]
data = preprocess(img, args)
batch_input_list.append(data)
img_path_list.append(img_path)
cnt += 1
if cnt % args.batch_size == 0 or (idx + 1) == len(image_list):
batch_tensor = paddle.to_tensor(batch_input_list)
net.eval()
batch_outputs = net(batch_tensor)
if args.model == "GoogLeNet":
batch_outputs = batch_outputs[0]
if multilabel:
batch_outputs = F.sigmoid(batch_outputs)
else:
batch_outputs = F.softmax(batch_outputs)
batch_outputs = batch_outputs.numpy()
batch_result_list = postprocess(batch_outputs, args.top_k, multilabel=multilabel)
for number, result_dict in enumerate(batch_result_list):
filename = img_path_list[number].split("/")[-1]
clas_ids = result_dict["clas_ids"]
scores_str = "[{}]".format(", ".join("{:.2f}".format(
r) for r in result_dict["scores"]))
print("File:{}, Top-{} result: class id(s): {}, score(s): {}".
format(filename, args.top_k, clas_ids, scores_str))
if args.pre_label_image:
save_prelabel_results(clas_ids[0], img_path_list[number],
args.pre_label_out_idr)
batch_input_list = []
img_path_list = []
if __name__ == "__main__":
main()