PaddleClas/deploy/python/predict_system.py

116 lines
4.3 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
import copy
import cv2
import numpy as np
from python.predict_rec import RecPredictor
from python.predict_det import DetPredictor
from vector_search import Graph_Index
from utils import logger
from utils import config
from utils.get_image_list import get_image_list
def split_datafile(data_file, image_root):
gallery_images = []
gallery_docs = []
with open(datafile) as f:
lines = f.readlines()
for i, line in enumerate(lines):
line = line.strip().split("\t")
if line[0] == 'image_id':
continue
image_file = os.path.join(image_root, line[3])
image_doc = line[1]
gallery_images.append(image_file)
gallery_docs.append(image_doc)
return gallery_images, gallery_docs
class SystemPredictor(object):
def __init__(self, config):
self.config = config
self.rec_predictor = RecPredictor(config)
self.det_predictor = DetPredictor(config)
assert 'IndexProcess' in config.keys(), "Index config not found ... "
self.indexer(config['IndexProcess'])
self.return_k = self.config['IndexProcess']['infer']['return_k']
self.search_budget = self.config['IndexProcess']['infer']['search_budget']
def indexer(self, config):
if 'build' in config.keys() and config['build']['enable']: # build the index from scratch
with open(config['build']['datafile']) as f:
lines = f.readlines()
gallery_images, gallery_docs = split_datafile(config['build']['data_file'], config['build']['image_root'])
# extract gallery features
gallery_features = np.zeros([len(gallery_images), config['build']['embedding_size']], dtype=np.float32)
for i, image_file in enumerate(gallery_images):
img = cv2.imread(image_file)[:, :, ::-1]
rec_feat = self.rec_predictor.predict(img)
gallery_features[i,:] = rec_feat
# train index
self.Searcher = Graph_Index(dist_type=config['build']['dist_type'])
self.Searcher.build(gallery_vectors=gallery_features, gallery_docs=gallery_docs,
pq_size=config['build']['pq_size'], index_path=config['build']['index_path'])
else: # load local index
self.Searcher = Graph_Index(dist_type=config['build']['dist_type'])
self.Searcher.load(config['infer']['index_path'])
def predict(self, img):
output = []
results = self.det_predictor.predict(img)
for result in results:
#print(result)
xmin, xmax, ymin, ymax = result["bbox"].astype("int")
crop_img = img[xmin:xmax, ymin:ymax, :].copy()
rec_results = self.rec_predictor.predict(crop_img)
result["featrue"] = rec_results
scores, docs = self.Searcher.search(query=rec_results, return_k=self.return_k, search_budget=self.search_budget)
result["ret_docs"] = docs
result["ret_scores"] = scores
output.append(result)
return output
def main(config):
system_predictor = SystemPredictor(config)
image_list = get_image_list(config["Global"]["infer_imgs"])
assert config["Global"]["batch_size"] == 1
for idx, image_file in enumerate(image_list):
img = cv2.imread(image_file)[:, :, ::-1]
output = system_predictor.predict(img)
#print(output)
return
if __name__ == "__main__":
args = config.parse_args()
config = config.get_config(args.config, overrides=args.override, show=True)
main(config)