PaddleClas/deploy/python/predict_det.py

158 lines
5.3 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
from utils import logger
from utils import config
from utils.predictor import Predictor
from utils.get_image_list import get_image_list
from det_preprocess import det_preprocess
from preprocess import create_operators
import os
import argparse
import time
import yaml
import ast
from functools import reduce
import cv2
import numpy as np
import paddle
class DetPredictor(Predictor):
def __init__(self, config):
super().__init__(config["Global"],
config["Global"]["det_inference_model_dir"])
self.preprocess_ops = create_operators(config["DetPreProcess"][
"transform_ops"])
self.config = config
def preprocess(self, img):
im_info = {
'scale_factor': np.array(
[1., 1.], dtype=np.float32),
'im_shape': np.array(
img.shape[:2], dtype=np.float32),
'input_shape': self.config["Global"]["image_shape"],
"scale_factor": np.array(
[1., 1.], dtype=np.float32)
}
im, im_info = det_preprocess(img, im_info, self.preprocess_ops)
inputs = self.create_inputs(im, im_info)
return inputs
def create_inputs(self, im, im_info):
"""generate input for different model type
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
model_arch (str): model type
Returns:
inputs (dict): input of model
"""
inputs = {}
inputs['image'] = np.array((im, )).astype('float32')
inputs['im_shape'] = np.array(
(im_info['im_shape'], )).astype('float32')
inputs['scale_factor'] = np.array(
(im_info['scale_factor'], )).astype('float32')
return inputs
def parse_det_results(self, pred, threshold, label_list):
max_det_results = self.config["Global"]["max_det_results"]
keep_indexes = pred[:, 1].argsort()[::-1][:max_det_results]
results = []
for idx in keep_indexes:
single_res = pred[idx]
class_id = int(single_res[0])
score = single_res[1]
bbox = single_res[2:]
if score < threshold:
continue
label_name = label_list[class_id]
results.append({
"class_id": class_id,
"score": score,
"bbox": bbox,
"label_name": label_name,
})
return results
def predict(self, image, threshold=0.5, run_benchmark=False):
'''
Args:
image (str/np.ndarray): path of image/ np.ndarray read by cv2
threshold (float): threshold of predicted box' score
Returns:
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape: [N, im_h, im_w]
'''
inputs = self.preprocess(image)
np_boxes = None
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(inputs[input_names[i]])
t1 = time.time()
self.predictor.run()
output_names = self.predictor.get_output_names()
boxes_tensor = self.predictor.get_output_handle(output_names[0])
np_boxes = boxes_tensor.copy_to_cpu()
t2 = time.time()
print("Inference: {} ms per batch image".format((t2 - t1) * 1000.0))
# do not perform postprocess in benchmark mode
results = []
if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
print('[WARNNING] No object detected.')
results = np.array([])
else:
results = np_boxes
results = self.parse_det_results(results,
self.config["Global"]["threshold"],
self.config["Global"]["labe_list"])
return results
def main(config):
det_predictor = DetPredictor(config)
image_list = get_image_list(config["Global"]["infer_imgs"])
assert config["Global"]["batch_size"] == 1
for idx, image_file in enumerate(image_list):
img = cv2.imread(image_file)[:, :, ::-1]
output = det_predictor.predict(img)
print(output)
return
if __name__ == "__main__":
args = config.parse_args()
config = config.get_config(args.config, overrides=args.override, show=True)
main(config)