158 lines
5.3 KiB
Python
158 lines
5.3 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
|
|
|
|
from utils import logger
|
|
from utils import config
|
|
from utils.predictor import Predictor
|
|
from utils.get_image_list import get_image_list
|
|
from det_preprocess import det_preprocess
|
|
from preprocess import create_operators
|
|
|
|
import os
|
|
import argparse
|
|
import time
|
|
import yaml
|
|
import ast
|
|
from functools import reduce
|
|
import cv2
|
|
import numpy as np
|
|
import paddle
|
|
|
|
|
|
class DetPredictor(Predictor):
|
|
def __init__(self, config):
|
|
super().__init__(config["Global"],
|
|
config["Global"]["det_inference_model_dir"])
|
|
|
|
self.preprocess_ops = create_operators(config["DetPreProcess"][
|
|
"transform_ops"])
|
|
self.config = config
|
|
|
|
def preprocess(self, img):
|
|
im_info = {
|
|
'scale_factor': np.array(
|
|
[1., 1.], dtype=np.float32),
|
|
'im_shape': np.array(
|
|
img.shape[:2], dtype=np.float32),
|
|
'input_shape': self.config["Global"]["image_shape"],
|
|
"scale_factor": np.array(
|
|
[1., 1.], dtype=np.float32)
|
|
}
|
|
im, im_info = det_preprocess(img, im_info, self.preprocess_ops)
|
|
inputs = self.create_inputs(im, im_info)
|
|
return inputs
|
|
|
|
def create_inputs(self, im, im_info):
|
|
"""generate input for different model type
|
|
Args:
|
|
im (np.ndarray): image (np.ndarray)
|
|
im_info (dict): info of image
|
|
model_arch (str): model type
|
|
Returns:
|
|
inputs (dict): input of model
|
|
"""
|
|
inputs = {}
|
|
inputs['image'] = np.array((im, )).astype('float32')
|
|
inputs['im_shape'] = np.array(
|
|
(im_info['im_shape'], )).astype('float32')
|
|
inputs['scale_factor'] = np.array(
|
|
(im_info['scale_factor'], )).astype('float32')
|
|
|
|
return inputs
|
|
|
|
def parse_det_results(self, pred, threshold, label_list):
|
|
max_det_results = self.config["Global"]["max_det_results"]
|
|
keep_indexes = pred[:, 1].argsort()[::-1][:max_det_results]
|
|
results = []
|
|
for idx in keep_indexes:
|
|
single_res = pred[idx]
|
|
class_id = int(single_res[0])
|
|
score = single_res[1]
|
|
bbox = single_res[2:]
|
|
if score < threshold:
|
|
continue
|
|
label_name = label_list[class_id]
|
|
results.append({
|
|
"class_id": class_id,
|
|
"score": score,
|
|
"bbox": bbox,
|
|
"label_name": label_name,
|
|
})
|
|
return results
|
|
|
|
def predict(self, image, threshold=0.5, run_benchmark=False):
|
|
'''
|
|
Args:
|
|
image (str/np.ndarray): path of image/ np.ndarray read by cv2
|
|
threshold (float): threshold of predicted box' score
|
|
Returns:
|
|
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
|
|
matix element:[class, score, x_min, y_min, x_max, y_max]
|
|
MaskRCNN's results include 'masks': np.ndarray:
|
|
shape: [N, im_h, im_w]
|
|
'''
|
|
inputs = self.preprocess(image)
|
|
np_boxes = None
|
|
input_names = self.predictor.get_input_names()
|
|
|
|
for i in range(len(input_names)):
|
|
input_tensor = self.predictor.get_input_handle(input_names[i])
|
|
input_tensor.copy_from_cpu(inputs[input_names[i]])
|
|
|
|
t1 = time.time()
|
|
self.predictor.run()
|
|
output_names = self.predictor.get_output_names()
|
|
boxes_tensor = self.predictor.get_output_handle(output_names[0])
|
|
np_boxes = boxes_tensor.copy_to_cpu()
|
|
t2 = time.time()
|
|
|
|
print("Inference: {} ms per batch image".format((t2 - t1) * 1000.0))
|
|
|
|
# do not perform postprocess in benchmark mode
|
|
results = []
|
|
if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
|
|
print('[WARNNING] No object detected.')
|
|
results = np.array([])
|
|
else:
|
|
results = np_boxes
|
|
|
|
results = self.parse_det_results(results,
|
|
self.config["Global"]["threshold"],
|
|
self.config["Global"]["labe_list"])
|
|
return results
|
|
|
|
|
|
def main(config):
|
|
det_predictor = DetPredictor(config)
|
|
image_list = get_image_list(config["Global"]["infer_imgs"])
|
|
|
|
assert config["Global"]["batch_size"] == 1
|
|
for idx, image_file in enumerate(image_list):
|
|
img = cv2.imread(image_file)[:, :, ::-1]
|
|
output = det_predictor.predict(img)
|
|
print(output)
|
|
|
|
return
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = config.parse_args()
|
|
config = config.get_config(args.config, overrides=args.override, show=True)
|
|
main(config)
|