375 lines
12 KiB
Python
375 lines
12 KiB
Python
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle.nn.initializer import KaimingNormal, Constant
|
|
from paddle.nn import Conv2D, BatchNorm2D, ReLU, AdaptiveAvgPool2D, MaxPool2D
|
|
from paddle.regularizer import L2Decay
|
|
from paddle import ParamAttr
|
|
|
|
from ..base.theseus_layer import TheseusLayer
|
|
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
|
|
|
MODEL_URLS = {
|
|
"PPHGNet_tiny":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams",
|
|
"PPHGNet_small":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams",
|
|
"PPHGNet_base": ""
|
|
}
|
|
|
|
__all__ = list(MODEL_URLS.keys())
|
|
|
|
kaiming_normal_ = KaimingNormal()
|
|
zeros_ = Constant(value=0.)
|
|
ones_ = Constant(value=1.)
|
|
|
|
|
|
class ConvBNAct(TheseusLayer):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
groups=1,
|
|
use_act=True):
|
|
super().__init__()
|
|
self.use_act = use_act
|
|
self.conv = Conv2D(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding=(kernel_size - 1) // 2,
|
|
groups=groups,
|
|
bias_attr=False)
|
|
self.bn = BatchNorm2D(
|
|
out_channels,
|
|
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
|
|
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
|
|
if self.use_act:
|
|
self.act = ReLU()
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
if self.use_act:
|
|
x = self.act(x)
|
|
return x
|
|
|
|
|
|
class ESEModule(TheseusLayer):
|
|
def __init__(self, channels):
|
|
super().__init__()
|
|
self.avg_pool = AdaptiveAvgPool2D(1)
|
|
self.conv = Conv2D(
|
|
in_channels=channels,
|
|
out_channels=channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0)
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
x = self.avg_pool(x)
|
|
x = self.conv(x)
|
|
x = self.sigmoid(x)
|
|
return paddle.multiply(x=identity, y=x)
|
|
|
|
|
|
class HG_Block(TheseusLayer):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
mid_channels,
|
|
out_channels,
|
|
layer_num,
|
|
identity=False, ):
|
|
super().__init__()
|
|
self.identity = identity
|
|
|
|
self.layers = nn.LayerList()
|
|
self.layers.append(
|
|
ConvBNAct(
|
|
in_channels=in_channels,
|
|
out_channels=mid_channels,
|
|
kernel_size=3,
|
|
stride=1))
|
|
for _ in range(layer_num - 1):
|
|
self.layers.append(
|
|
ConvBNAct(
|
|
in_channels=mid_channels,
|
|
out_channels=mid_channels,
|
|
kernel_size=3,
|
|
stride=1))
|
|
|
|
# feature aggregation
|
|
total_channels = in_channels + layer_num * mid_channels
|
|
self.aggregation_conv = ConvBNAct(
|
|
in_channels=total_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=1,
|
|
stride=1)
|
|
self.att = ESEModule(out_channels)
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
output = []
|
|
output.append(x)
|
|
for layer in self.layers:
|
|
x = layer(x)
|
|
output.append(x)
|
|
x = paddle.concat(output, axis=1)
|
|
x = self.aggregation_conv(x)
|
|
x = self.att(x)
|
|
if self.identity:
|
|
x += identity
|
|
return x
|
|
|
|
|
|
class HG_Stage(TheseusLayer):
|
|
def __init__(self,
|
|
in_channels,
|
|
mid_channels,
|
|
out_channels,
|
|
block_num,
|
|
layer_num,
|
|
downsample=True):
|
|
super().__init__()
|
|
self.downsample = downsample
|
|
if downsample:
|
|
self.downsample = ConvBNAct(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
kernel_size=3,
|
|
stride=2,
|
|
groups=in_channels,
|
|
use_act=False)
|
|
|
|
blocks_list = []
|
|
blocks_list.append(
|
|
HG_Block(
|
|
in_channels,
|
|
mid_channels,
|
|
out_channels,
|
|
layer_num,
|
|
identity=False))
|
|
for _ in range(block_num - 1):
|
|
blocks_list.append(
|
|
HG_Block(
|
|
out_channels,
|
|
mid_channels,
|
|
out_channels,
|
|
layer_num,
|
|
identity=True))
|
|
self.blocks = nn.Sequential(*blocks_list)
|
|
|
|
def forward(self, x):
|
|
if self.downsample:
|
|
x = self.downsample(x)
|
|
x = self.blocks(x)
|
|
return x
|
|
|
|
|
|
class PPHGNet(TheseusLayer):
|
|
"""
|
|
PPHGNet
|
|
Args:
|
|
stem_channels: list. Stem channel list of PPHGNet.
|
|
stage_config: dict. The configuration of each stage of PPHGNet. such as the number of channels, stride, etc.
|
|
layer_num: int. Number of layers of HG_Block.
|
|
use_last_conv: boolean. Whether to use a 1x1 convolutional layer before the classification layer.
|
|
class_expand: int=2048. Number of channels for the last 1x1 convolutional layer.
|
|
dropout_prob: float. Parameters of dropout, 0.0 means dropout is not used.
|
|
class_num: int=1000. The number of classes.
|
|
Returns:
|
|
model: nn.Layer. Specific PPHGNet model depends on args.
|
|
"""
|
|
|
|
def __init__(self,
|
|
stem_channels,
|
|
stage_config,
|
|
layer_num,
|
|
use_last_conv=True,
|
|
class_expand=2048,
|
|
dropout_prob=0.0,
|
|
class_num=1000):
|
|
super().__init__()
|
|
self.use_last_conv = use_last_conv
|
|
self.class_expand = class_expand
|
|
|
|
# stem
|
|
stem_channels.insert(0, 3)
|
|
self.stem = nn.Sequential(* [
|
|
ConvBNAct(
|
|
in_channels=stem_channels[i],
|
|
out_channels=stem_channels[i + 1],
|
|
kernel_size=3,
|
|
stride=2 if i == 0 else 1) for i in range(
|
|
len(stem_channels) - 1)
|
|
])
|
|
self.pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
|
|
|
# stages
|
|
self.stages = nn.LayerList()
|
|
for k in stage_config:
|
|
in_channels, mid_channels, out_channels, block_num, downsample = stage_config[
|
|
k]
|
|
self.stages.append(
|
|
HG_Stage(in_channels, mid_channels, out_channels, block_num,
|
|
layer_num, downsample))
|
|
|
|
self.avg_pool = AdaptiveAvgPool2D(1)
|
|
if self.use_last_conv:
|
|
self.last_conv = Conv2D(
|
|
in_channels=out_channels,
|
|
out_channels=self.class_expand,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
bias_attr=False)
|
|
self.act = nn.ReLU()
|
|
self.dropout = nn.Dropout(
|
|
p=dropout_prob, mode="downscale_in_infer")
|
|
|
|
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
|
|
self.fc = nn.Linear(self.class_expand
|
|
if self.use_last_conv else out_channels, class_num)
|
|
|
|
self._init_weights()
|
|
|
|
def _init_weights(self):
|
|
for m in self.sublayers():
|
|
if isinstance(m, nn.Conv2D):
|
|
kaiming_normal_(m.weight)
|
|
elif isinstance(m, (nn.BatchNorm2D)):
|
|
ones_(m.weight)
|
|
zeros_(m.bias)
|
|
elif isinstance(m, nn.Linear):
|
|
zeros_(m.bias)
|
|
|
|
def forward(self, x):
|
|
x = self.stem(x)
|
|
x = self.pool(x)
|
|
|
|
for stage in self.stages:
|
|
x = stage(x)
|
|
|
|
x = self.avg_pool(x)
|
|
if self.use_last_conv:
|
|
x = self.last_conv(x)
|
|
x = self.act(x)
|
|
x = self.dropout(x)
|
|
x = self.flatten(x)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld):
|
|
if pretrained is False:
|
|
pass
|
|
elif pretrained is True:
|
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
|
|
elif isinstance(pretrained, str):
|
|
load_dygraph_pretrain(model, pretrained)
|
|
else:
|
|
raise RuntimeError(
|
|
"pretrained type is not available. Please use `string` or `boolean` type."
|
|
)
|
|
|
|
|
|
def PPHGNet_tiny(pretrained=False, use_ssld=False, **kwargs):
|
|
"""
|
|
PPHGNet_tiny
|
|
Args:
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
If str, means the path of the pretrained model.
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
Returns:
|
|
model: nn.Layer. Specific `PPHGNet_tiny` model depends on args.
|
|
"""
|
|
stage_config = {
|
|
# in_channels, mid_channels, out_channels, blocks, downsample
|
|
"stage1": [96, 96, 224, 1, False],
|
|
"stage2": [224, 128, 448, 1, True],
|
|
"stage3": [448, 160, 512, 2, True],
|
|
"stage4": [512, 192, 768, 1, True],
|
|
}
|
|
|
|
model = PPHGNet(
|
|
stem_channels=[48, 48, 96],
|
|
stage_config=stage_config,
|
|
layer_num=5,
|
|
**kwargs)
|
|
_load_pretrained(pretrained, model, MODEL_URLS["PPHGNet_tiny"], use_ssld)
|
|
return model
|
|
|
|
|
|
def PPHGNet_small(pretrained=False, use_ssld=False, **kwargs):
|
|
"""
|
|
PPHGNet_small
|
|
Args:
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
If str, means the path of the pretrained model.
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
Returns:
|
|
model: nn.Layer. Specific `PPHGNet_small` model depends on args.
|
|
"""
|
|
stage_config = {
|
|
# in_channels, mid_channels, out_channels, blocks, downsample
|
|
"stage1": [128, 128, 256, 1, False],
|
|
"stage2": [256, 160, 512, 1, True],
|
|
"stage3": [512, 192, 768, 2, True],
|
|
"stage4": [768, 224, 1024, 1, True],
|
|
}
|
|
|
|
model = PPHGNet(
|
|
stem_channels=[64, 64, 128],
|
|
stage_config=stage_config,
|
|
layer_num=6,
|
|
**kwargs)
|
|
_load_pretrained(pretrained, model, MODEL_URLS["PPHGNet_small"], use_ssld)
|
|
return model
|
|
|
|
|
|
def PPHGNet_base(pretrained=False, use_ssld=True, **kwargs):
|
|
"""
|
|
PPHGNet_base
|
|
Args:
|
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
|
|
If str, means the path of the pretrained model.
|
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
|
|
Returns:
|
|
model: nn.Layer. Specific `PPHGNet_base` model depends on args.
|
|
"""
|
|
stage_config = {
|
|
# in_channels, mid_channels, out_channels, blocks, downsample
|
|
"stage1": [160, 192, 320, 1, False],
|
|
"stage2": [320, 224, 640, 2, True],
|
|
"stage3": [640, 256, 960, 3, True],
|
|
"stage4": [960, 288, 1280, 2, True],
|
|
}
|
|
|
|
model = PPHGNet(
|
|
stem_channels=[96, 96, 160],
|
|
stage_config=stage_config,
|
|
layer_num=7,
|
|
dropout_prob=0.2,
|
|
**kwargs)
|
|
_load_pretrained(pretrained, model, MODEL_URLS["PPHGNet_base"], use_ssld)
|
|
return model
|