PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py

262 lines
8.5 KiB
Python

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# reference: https://arxiv.org/abs/1409.1556
from __future__ import absolute_import, division, print_function
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import MaxPool2D
from ..base.theseus_layer import TheseusLayer
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"VGG11":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams",
"VGG13":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams",
"VGG16":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams",
"VGG19":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams",
}
MODEL_STAGES_PATTERN = {
"VGG": [
"conv_block_1", "conv_block_2", "conv_block_3", "conv_block_4",
"conv_block_5"
]
}
__all__ = MODEL_URLS.keys()
# VGG config
# key: VGG network depth
# value: conv num in different blocks
NET_CONFIG = {
11: [1, 1, 2, 2, 2],
13: [2, 2, 2, 2, 2],
16: [2, 2, 3, 3, 3],
19: [2, 2, 4, 4, 4]
}
class ConvBlock(TheseusLayer):
def __init__(self, input_channels, output_channels, groups):
super().__init__()
self.groups = groups
self.conv1 = Conv2D(
in_channels=input_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
bias_attr=False)
if groups == 2 or groups == 3 or groups == 4:
self.conv2 = Conv2D(
in_channels=output_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
bias_attr=False)
if groups == 3 or groups == 4:
self.conv3 = Conv2D(
in_channels=output_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
bias_attr=False)
if groups == 4:
self.conv4 = Conv2D(
in_channels=output_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
bias_attr=False)
self.max_pool = MaxPool2D(kernel_size=2, stride=2, padding=0)
self.relu = nn.ReLU()
def forward(self, inputs):
x = self.conv1(inputs)
x = self.relu(x)
if self.groups == 2 or self.groups == 3 or self.groups == 4:
x = self.conv2(x)
x = self.relu(x)
if self.groups == 3 or self.groups == 4:
x = self.conv3(x)
x = self.relu(x)
if self.groups == 4:
x = self.conv4(x)
x = self.relu(x)
x = self.max_pool(x)
return x
class VGGNet(TheseusLayer):
"""
VGGNet
Args:
config: list. VGGNet config.
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
class_num: int=1000. The number of classes.
Returns:
model: nn.Layer. Specific VGG model depends on args.
"""
def __init__(self,
config,
stages_pattern,
stop_grad_layers=0,
class_num=1000,
return_patterns=None,
return_stages=None):
super().__init__()
self.stop_grad_layers = stop_grad_layers
self.conv_block_1 = ConvBlock(3, 64, config[0])
self.conv_block_2 = ConvBlock(64, 128, config[1])
self.conv_block_3 = ConvBlock(128, 256, config[2])
self.conv_block_4 = ConvBlock(256, 512, config[3])
self.conv_block_5 = ConvBlock(512, 512, config[4])
self.relu = nn.ReLU()
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
for idx, block in enumerate([
self.conv_block_1, self.conv_block_2, self.conv_block_3,
self.conv_block_4, self.conv_block_5
]):
if self.stop_grad_layers >= idx + 1:
for param in block.parameters():
param.trainable = False
self.drop = Dropout(p=0.5, mode="downscale_in_infer")
self.fc1 = Linear(7 * 7 * 512, 4096)
self.fc2 = Linear(4096, 4096)
self.fc3 = Linear(4096, class_num)
super().init_res(
stages_pattern,
return_patterns=return_patterns,
return_stages=return_stages)
def forward(self, inputs):
x = self.conv_block_1(inputs)
x = self.conv_block_2(x)
x = self.conv_block_3(x)
x = self.conv_block_4(x)
x = self.conv_block_5(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.drop(x)
x = self.fc2(x)
x = self.relu(x)
x = self.drop(x)
x = self.fc3(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def VGG11(pretrained=False, use_ssld=False, **kwargs):
"""
VGG11
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `VGG11` model depends on args.
"""
model = VGGNet(
config=NET_CONFIG[11],
stages_pattern=MODEL_STAGES_PATTERN["VGG"],
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["VGG11"], use_ssld)
return model
def VGG13(pretrained=False, use_ssld=False, **kwargs):
"""
VGG13
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `VGG13` model depends on args.
"""
model = VGGNet(
config=NET_CONFIG[13],
stages_pattern=MODEL_STAGES_PATTERN["VGG"],
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["VGG13"], use_ssld)
return model
def VGG16(pretrained=False, use_ssld=False, **kwargs):
"""
VGG16
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `VGG16` model depends on args.
"""
model = VGGNet(
config=NET_CONFIG[16],
stages_pattern=MODEL_STAGES_PATTERN["VGG"],
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["VGG16"], use_ssld)
return model
def VGG19(pretrained=False, use_ssld=False, **kwargs):
"""
VGG19
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `VGG19` model depends on args.
"""
model = VGGNet(
config=NET_CONFIG[19],
stages_pattern=MODEL_STAGES_PATTERN["VGG"],
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["VGG19"], use_ssld)
return model