PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py

978 lines
31 KiB
Python

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was based on https://github.com/lukemelas/EfficientNet-PyTorch
# reference: https://arxiv.org/abs/1905.11946
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
import math
import collections
import re
import copy
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"EfficientNetB0_small":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams",
"EfficientNetB0":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams",
"EfficientNetB1":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams",
"EfficientNetB2":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams",
"EfficientNetB3":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams",
"EfficientNetB4":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams",
"EfficientNetB5":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams",
"EfficientNetB6":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams",
"EfficientNetB7":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
GlobalParams = collections.namedtuple('GlobalParams', [
'batch_norm_momentum',
'batch_norm_epsilon',
'dropout_rate',
'num_classes',
'width_coefficient',
'depth_coefficient',
'depth_divisor',
'min_depth',
'drop_connect_rate',
])
BlockArgs = collections.namedtuple('BlockArgs', [
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
'expand_ratio', 'id_skip', 'stride', 'se_ratio'
])
GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields)
def efficientnet_params(model_name):
""" Map EfficientNet model name to parameter coefficients. """
params_dict = {
# Coefficients: width,depth,resolution,dropout
'efficientnet-b0': (1.0, 1.0, 224, 0.2),
'efficientnet-b1': (1.0, 1.1, 240, 0.2),
'efficientnet-b2': (1.1, 1.2, 260, 0.3),
'efficientnet-b3': (1.2, 1.4, 300, 0.3),
'efficientnet-b4': (1.4, 1.8, 380, 0.4),
'efficientnet-b5': (1.6, 2.2, 456, 0.4),
'efficientnet-b6': (1.8, 2.6, 528, 0.5),
'efficientnet-b7': (2.0, 3.1, 600, 0.5),
}
return params_dict[model_name]
def efficientnet(width_coefficient=None,
depth_coefficient=None,
dropout_rate=0.2,
drop_connect_rate=0.2):
""" Get block arguments according to parameter and coefficients. """
blocks_args = [
'r1_k3_s11_e1_i32_o16_se0.25',
'r2_k3_s22_e6_i16_o24_se0.25',
'r2_k5_s22_e6_i24_o40_se0.25',
'r3_k3_s22_e6_i40_o80_se0.25',
'r3_k5_s11_e6_i80_o112_se0.25',
'r4_k5_s22_e6_i112_o192_se0.25',
'r1_k3_s11_e6_i192_o320_se0.25',
]
blocks_args = BlockDecoder.decode(blocks_args)
global_params = GlobalParams(
batch_norm_momentum=0.99,
batch_norm_epsilon=1e-3,
dropout_rate=dropout_rate,
drop_connect_rate=drop_connect_rate,
num_classes=1000,
width_coefficient=width_coefficient,
depth_coefficient=depth_coefficient,
depth_divisor=8,
min_depth=None)
return blocks_args, global_params
def get_model_params(model_name, override_params):
""" Get the block args and global params for a given model """
if model_name.startswith('efficientnet'):
w, d, _, p = efficientnet_params(model_name)
blocks_args, global_params = efficientnet(
width_coefficient=w, depth_coefficient=d, dropout_rate=p)
else:
raise NotImplementedError('model name is not pre-defined: %s' %
model_name)
if override_params:
global_params = global_params._replace(**override_params)
return blocks_args, global_params
def round_filters(filters, global_params):
""" Calculate and round number of filters based on depth multiplier. """
multiplier = global_params.width_coefficient
if not multiplier:
return filters
divisor = global_params.depth_divisor
min_depth = global_params.min_depth
filters *= multiplier
min_depth = min_depth or divisor
new_filters = max(min_depth,
int(filters + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * filters: # prevent rounding by more than 10%
new_filters += divisor
return int(new_filters)
def round_repeats(repeats, global_params):
""" Round number of filters based on depth multiplier. """
multiplier = global_params.depth_coefficient
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
class BlockDecoder(object):
"""
Block Decoder, straight from the official TensorFlow repository.
"""
@staticmethod
def _decode_block_string(block_string):
""" Gets a block through a string notation of arguments. """
assert isinstance(block_string, str)
ops = block_string.split('_')
options = {}
for op in ops:
splits = re.split(r'(\d.*)', op)
if len(splits) >= 2:
key, value = splits[:2]
options[key] = value
# Check stride
cond_1 = ('s' in options and len(options['s']) == 1)
cond_2 = ((len(options['s']) == 2) and
(options['s'][0] == options['s'][1]))
assert (cond_1 or cond_2)
return BlockArgs(
kernel_size=int(options['k']),
num_repeat=int(options['r']),
input_filters=int(options['i']),
output_filters=int(options['o']),
expand_ratio=int(options['e']),
id_skip=('noskip' not in block_string),
se_ratio=float(options['se']) if 'se' in options else None,
stride=[int(options['s'][0])])
@staticmethod
def _encode_block_string(block):
"""Encodes a block to a string."""
args = [
'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' %
(block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio,
'i%d' % block.input_filters, 'o%d' % block.output_filters
]
if 0 < block.se_ratio <= 1:
args.append('se%s' % block.se_ratio)
if block.id_skip is False:
args.append('noskip')
return '_'.join(args)
@staticmethod
def decode(string_list):
"""
Decode a list of string notations to specify blocks in the network.
string_list: list of strings, each string is a notation of block
return
list of BlockArgs namedtuples of block args
"""
assert isinstance(string_list, list)
blocks_args = []
for block_string in string_list:
blocks_args.append(BlockDecoder._decode_block_string(block_string))
return blocks_args
@staticmethod
def encode(blocks_args):
"""
Encodes a list of BlockArgs to a list of strings.
:param blocks_args: a list of BlockArgs namedtuples of block args
:return: a list of strings, each string is a notation of block
"""
block_strings = []
for block in blocks_args:
block_strings.append(BlockDecoder._encode_block_string(block))
return block_strings
def initial_type(name, use_bias=False):
param_attr = ParamAttr(name=name + "_weights")
if use_bias:
bias_attr = ParamAttr(name=name + "_offset")
else:
bias_attr = False
return param_attr, bias_attr
def init_batch_norm_layer(name="batch_norm"):
param_attr = ParamAttr(name=name + "_scale")
bias_attr = ParamAttr(name=name + "_offset")
return param_attr, bias_attr
def init_fc_layer(name="fc"):
param_attr = ParamAttr(name=name + "_weights")
bias_attr = ParamAttr(name=name + "_offset")
return param_attr, bias_attr
def cal_padding(img_size, stride, filter_size, dilation=1):
"""Calculate padding size."""
if img_size % stride == 0:
out_size = max(filter_size - stride, 0)
else:
out_size = max(filter_size - (img_size % stride), 0)
return out_size // 2, out_size - out_size // 2
inp_shape = {
"b0_small": [224, 112, 112, 56, 28, 14, 14, 7],
"b0": [224, 112, 112, 56, 28, 14, 14, 7],
"b1": [240, 120, 120, 60, 30, 15, 15, 8],
"b2": [260, 130, 130, 65, 33, 17, 17, 9],
"b3": [300, 150, 150, 75, 38, 19, 19, 10],
"b4": [380, 190, 190, 95, 48, 24, 24, 12],
"b5": [456, 228, 228, 114, 57, 29, 29, 15],
"b6": [528, 264, 264, 132, 66, 33, 33, 17],
"b7": [600, 300, 300, 150, 75, 38, 38, 19]
}
def _drop_connect(inputs, prob, is_test):
if is_test:
output = inputs
else:
keep_prob = 1.0 - prob
inputs_shape = paddle.shape(inputs)
random_tensor = keep_prob + paddle.rand(
shape=[inputs_shape[0], 1, 1, 1])
binary_tensor = paddle.floor(random_tensor)
output = paddle.multiply(inputs, binary_tensor) / keep_prob
return output
class Conv2ds(nn.Layer):
def __init__(self,
input_channels,
output_channels,
filter_size,
stride=1,
padding=0,
groups=None,
name="conv2d",
act=None,
use_bias=False,
padding_type=None,
model_name=None,
cur_stage=None):
super(Conv2ds, self).__init__()
assert act in [None, "swish", "sigmoid"]
self.act = act
param_attr, bias_attr = initial_type(name=name, use_bias=use_bias)
def get_padding(filter_size, stride=1, dilation=1):
padding = ((stride - 1) + dilation * (filter_size - 1)) // 2
return padding
inps = 1 if model_name == None and cur_stage == None else inp_shape[
model_name][cur_stage]
self.need_crop = False
if padding_type == "SAME":
top_padding, bottom_padding = cal_padding(inps, stride,
filter_size)
left_padding, right_padding = cal_padding(inps, stride,
filter_size)
height_padding = bottom_padding
width_padding = right_padding
if top_padding != bottom_padding or left_padding != right_padding:
height_padding = top_padding + stride
width_padding = left_padding + stride
self.need_crop = True
padding = [height_padding, width_padding]
elif padding_type == "VALID":
height_padding = 0
width_padding = 0
padding = [height_padding, width_padding]
elif padding_type == "DYNAMIC":
padding = get_padding(filter_size, stride)
else:
padding = padding_type
groups = 1 if groups is None else groups
self._conv = Conv2D(
input_channels,
output_channels,
filter_size,
groups=groups,
stride=stride,
# act=act,
padding=padding,
weight_attr=param_attr,
bias_attr=bias_attr)
def forward(self, inputs):
x = self._conv(inputs)
if self.act == "swish":
x = F.swish(x)
elif self.act == "sigmoid":
x = F.sigmoid(x)
if self.need_crop:
x = x[:, :, 1:, 1:]
return x
class ConvBNLayer(nn.Layer):
def __init__(self,
input_channels,
filter_size,
output_channels,
stride=1,
num_groups=1,
padding_type="SAME",
conv_act=None,
bn_act="swish",
use_bn=True,
use_bias=False,
name=None,
conv_name=None,
bn_name=None,
model_name=None,
cur_stage=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2ds(
input_channels=input_channels,
output_channels=output_channels,
filter_size=filter_size,
stride=stride,
groups=num_groups,
act=conv_act,
padding_type=padding_type,
name=conv_name,
use_bias=use_bias,
model_name=model_name,
cur_stage=cur_stage)
self.use_bn = use_bn
if use_bn is True:
bn_name = name + bn_name
param_attr, bias_attr = init_batch_norm_layer(bn_name)
self._bn = BatchNorm(
num_channels=output_channels,
act=bn_act,
momentum=0.99,
epsilon=0.001,
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + "_variance",
param_attr=param_attr,
bias_attr=bias_attr)
def forward(self, inputs):
if self.use_bn:
x = self._conv(inputs)
x = self._bn(x)
return x
else:
return self._conv(inputs)
class ExpandConvNorm(nn.Layer):
def __init__(self,
input_channels,
block_args,
padding_type,
name=None,
model_name=None,
cur_stage=None):
super(ExpandConvNorm, self).__init__()
self.oup = block_args.input_filters * block_args.expand_ratio
self.expand_ratio = block_args.expand_ratio
if self.expand_ratio != 1:
self._conv = ConvBNLayer(
input_channels,
1,
self.oup,
bn_act=None,
padding_type=padding_type,
name=name,
conv_name=name + "_expand_conv",
bn_name="_bn0",
model_name=model_name,
cur_stage=cur_stage)
def forward(self, inputs):
if self.expand_ratio != 1:
return self._conv(inputs)
else:
return inputs
class DepthwiseConvNorm(nn.Layer):
def __init__(self,
input_channels,
block_args,
padding_type,
name=None,
model_name=None,
cur_stage=None):
super(DepthwiseConvNorm, self).__init__()
self.k = block_args.kernel_size
self.s = block_args.stride
if isinstance(self.s, list) or isinstance(self.s, tuple):
self.s = self.s[0]
oup = block_args.input_filters * block_args.expand_ratio
self._conv = ConvBNLayer(
input_channels,
self.k,
oup,
self.s,
num_groups=input_channels,
bn_act=None,
padding_type=padding_type,
name=name,
conv_name=name + "_depthwise_conv",
bn_name="_bn1",
model_name=model_name,
cur_stage=cur_stage)
def forward(self, inputs):
return self._conv(inputs)
class ProjectConvNorm(nn.Layer):
def __init__(self,
input_channels,
block_args,
padding_type,
name=None,
model_name=None,
cur_stage=None):
super(ProjectConvNorm, self).__init__()
final_oup = block_args.output_filters
self._conv = ConvBNLayer(
input_channels,
1,
final_oup,
bn_act=None,
padding_type=padding_type,
name=name,
conv_name=name + "_project_conv",
bn_name="_bn2",
model_name=model_name,
cur_stage=cur_stage)
def forward(self, inputs):
return self._conv(inputs)
class SEBlock(nn.Layer):
def __init__(self,
input_channels,
num_squeezed_channels,
oup,
padding_type,
name=None,
model_name=None,
cur_stage=None):
super(SEBlock, self).__init__()
self._pool = AdaptiveAvgPool2D(1)
self._conv1 = Conv2ds(
input_channels,
num_squeezed_channels,
1,
use_bias=True,
padding_type=padding_type,
act="swish",
name=name + "_se_reduce")
self._conv2 = Conv2ds(
num_squeezed_channels,
oup,
1,
act="sigmoid",
use_bias=True,
padding_type=padding_type,
name=name + "_se_expand")
def forward(self, inputs):
x = self._pool(inputs)
x = self._conv1(x)
x = self._conv2(x)
out = paddle.multiply(inputs, x)
return out
class MbConvBlock(nn.Layer):
def __init__(self,
input_channels,
block_args,
padding_type,
use_se,
name=None,
drop_connect_rate=None,
model_name=None,
cur_stage=None):
super(MbConvBlock, self).__init__()
oup = block_args.input_filters * block_args.expand_ratio
self.block_args = block_args
self.has_se = use_se and (block_args.se_ratio is not None) and (
0 < block_args.se_ratio <= 1)
self.id_skip = block_args.id_skip
self.expand_ratio = block_args.expand_ratio
self.drop_connect_rate = drop_connect_rate
if self.expand_ratio != 1:
self._ecn = ExpandConvNorm(
input_channels,
block_args,
padding_type=padding_type,
name=name,
model_name=model_name,
cur_stage=cur_stage)
self._dcn = DepthwiseConvNorm(
input_channels * block_args.expand_ratio,
block_args,
padding_type=padding_type,
name=name,
model_name=model_name,
cur_stage=cur_stage)
if self.has_se:
num_squeezed_channels = max(
1, int(block_args.input_filters * block_args.se_ratio))
self._se = SEBlock(
input_channels * block_args.expand_ratio,
num_squeezed_channels,
oup,
padding_type=padding_type,
name=name,
model_name=model_name,
cur_stage=cur_stage)
self._pcn = ProjectConvNorm(
input_channels * block_args.expand_ratio,
block_args,
padding_type=padding_type,
name=name,
model_name=model_name,
cur_stage=cur_stage)
def forward(self, inputs):
x = inputs
if self.expand_ratio != 1:
x = self._ecn(x)
x = F.swish(x)
x = self._dcn(x)
x = F.swish(x)
if self.has_se:
x = self._se(x)
x = self._pcn(x)
if self.id_skip and \
self.block_args.stride == 1 and \
self.block_args.input_filters == self.block_args.output_filters:
if self.drop_connect_rate:
x = _drop_connect(x, self.drop_connect_rate, not self.training)
x = paddle.add(x, inputs)
return x
class ConvStemNorm(nn.Layer):
def __init__(self,
input_channels,
padding_type,
_global_params,
name=None,
model_name=None,
cur_stage=None):
super(ConvStemNorm, self).__init__()
output_channels = round_filters(32, _global_params)
self._conv = ConvBNLayer(
input_channels,
filter_size=3,
output_channels=output_channels,
stride=2,
bn_act=None,
padding_type=padding_type,
name="",
conv_name="_conv_stem",
bn_name="_bn0",
model_name=model_name,
cur_stage=cur_stage)
def forward(self, inputs):
return self._conv(inputs)
class ExtractFeatures(nn.Layer):
def __init__(self,
input_channels,
_block_args,
_global_params,
padding_type,
use_se,
model_name=None):
super(ExtractFeatures, self).__init__()
self._global_params = _global_params
self._conv_stem = ConvStemNorm(
input_channels,
padding_type=padding_type,
_global_params=_global_params,
model_name=model_name,
cur_stage=0)
self.block_args_copy = copy.deepcopy(_block_args)
idx = 0
block_size = 0
for block_arg in self.block_args_copy:
block_arg = block_arg._replace(
input_filters=round_filters(block_arg.input_filters,
_global_params),
output_filters=round_filters(block_arg.output_filters,
_global_params),
num_repeat=round_repeats(block_arg.num_repeat, _global_params))
block_size += 1
for _ in range(block_arg.num_repeat - 1):
block_size += 1
self.conv_seq = []
cur_stage = 1
for block_args in _block_args:
block_args = block_args._replace(
input_filters=round_filters(block_args.input_filters,
_global_params),
output_filters=round_filters(block_args.output_filters,
_global_params),
num_repeat=round_repeats(block_args.num_repeat,
_global_params))
drop_connect_rate = self._global_params.drop_connect_rate
if drop_connect_rate:
drop_connect_rate *= float(idx) / block_size
_mc_block = self.add_sublayer(
"_blocks." + str(idx) + ".",
MbConvBlock(
block_args.input_filters,
block_args=block_args,
padding_type=padding_type,
use_se=use_se,
name="_blocks." + str(idx) + ".",
drop_connect_rate=drop_connect_rate,
model_name=model_name,
cur_stage=cur_stage))
self.conv_seq.append(_mc_block)
idx += 1
if block_args.num_repeat > 1:
block_args = block_args._replace(
input_filters=block_args.output_filters, stride=1)
for _ in range(block_args.num_repeat - 1):
drop_connect_rate = self._global_params.drop_connect_rate
if drop_connect_rate:
drop_connect_rate *= float(idx) / block_size
_mc_block = self.add_sublayer(
"block." + str(idx) + ".",
MbConvBlock(
block_args.input_filters,
block_args,
padding_type=padding_type,
use_se=use_se,
name="_blocks." + str(idx) + ".",
drop_connect_rate=drop_connect_rate,
model_name=model_name,
cur_stage=cur_stage))
self.conv_seq.append(_mc_block)
idx += 1
cur_stage += 1
def forward(self, inputs):
x = self._conv_stem(inputs)
x = F.swish(x)
for _mc_block in self.conv_seq:
x = _mc_block(x)
return x
class EfficientNet(nn.Layer):
def __init__(self,
name="b0",
padding_type="SAME",
override_params=None,
use_se=True,
class_num=1000):
super(EfficientNet, self).__init__()
model_name = 'efficientnet-' + name
self.name = name
self._block_args, self._global_params = get_model_params(
model_name, override_params)
self.padding_type = padding_type
self.use_se = use_se
self._ef = ExtractFeatures(
3,
self._block_args,
self._global_params,
self.padding_type,
self.use_se,
model_name=self.name)
output_channels = round_filters(1280, self._global_params)
if name == "b0_small" or name == "b0" or name == "b1":
oup = 320
elif name == "b2":
oup = 352
elif name == "b3":
oup = 384
elif name == "b4":
oup = 448
elif name == "b5":
oup = 512
elif name == "b6":
oup = 576
elif name == "b7":
oup = 640
self._conv = ConvBNLayer(
oup,
1,
output_channels,
bn_act="swish",
padding_type=self.padding_type,
name="",
conv_name="_conv_head",
bn_name="_bn1",
model_name=self.name,
cur_stage=7)
self._pool = AdaptiveAvgPool2D(1)
if self._global_params.dropout_rate:
self._drop = Dropout(
p=self._global_params.dropout_rate, mode="upscale_in_train")
param_attr, bias_attr = init_fc_layer("_fc")
self._fc = Linear(
output_channels,
class_num,
weight_attr=param_attr,
bias_attr=bias_attr)
def forward(self, inputs):
x = self._ef(inputs)
x = self._conv(x)
x = self._pool(x)
if self._global_params.dropout_rate:
x = self._drop(x)
x = paddle.squeeze(x, axis=[2, 3])
x = self._fc(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def EfficientNetB0_small(padding_type='DYNAMIC',
override_params=None,
use_se=False,
pretrained=False,
use_ssld=False,
**kwargs):
model = EfficientNet(
name='b0',
padding_type=padding_type,
override_params=override_params,
use_se=use_se,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB0_small"])
return model
def EfficientNetB0(padding_type='SAME',
override_params=None,
use_se=True,
pretrained=False,
use_ssld=False,
**kwargs):
model = EfficientNet(
name='b0',
padding_type=padding_type,
override_params=override_params,
use_se=use_se,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB0"])
return model
def EfficientNetB1(padding_type='SAME',
override_params=None,
use_se=True,
pretrained=False,
use_ssld=False,
**kwargs):
model = EfficientNet(
name='b1',
padding_type=padding_type,
override_params=override_params,
use_se=use_se,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB1"])
return model
def EfficientNetB2(padding_type='SAME',
override_params=None,
use_se=True,
pretrained=False,
use_ssld=False,
**kwargs):
model = EfficientNet(
name='b2',
padding_type=padding_type,
override_params=override_params,
use_se=use_se,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB2"])
return model
def EfficientNetB3(padding_type='SAME',
override_params=None,
use_se=True,
pretrained=False,
use_ssld=False,
**kwargs):
model = EfficientNet(
name='b3',
padding_type=padding_type,
override_params=override_params,
use_se=use_se,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB3"])
return model
def EfficientNetB4(padding_type='SAME',
override_params=None,
use_se=True,
pretrained=False,
use_ssld=False,
**kwargs):
model = EfficientNet(
name='b4',
padding_type=padding_type,
override_params=override_params,
use_se=use_se,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB4"])
return model
def EfficientNetB5(padding_type='SAME',
override_params=None,
use_se=True,
pretrained=False,
use_ssld=False,
**kwargs):
model = EfficientNet(
name='b5',
padding_type=padding_type,
override_params=override_params,
use_se=use_se,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB5"])
return model
def EfficientNetB6(padding_type='SAME',
override_params=None,
use_se=True,
pretrained=False,
use_ssld=False,
**kwargs):
model = EfficientNet(
name='b6',
padding_type=padding_type,
override_params=override_params,
use_se=use_se,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB6"])
return model
def EfficientNetB7(padding_type='SAME',
override_params=None,
use_se=True,
pretrained=False,
use_ssld=False,
**kwargs):
model = EfficientNet(
name='b7',
padding_type=padding_type,
override_params=override_params,
use_se=use_se,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB7"])
return model