PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py

480 lines
15 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# reference: https://arxiv.org/abs/1602.07261
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"InceptionV4":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams"
}
__all__ = list(MODEL_URLS.keys())
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
padding=0,
groups=1,
act='relu',
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
bn_name = name + "_bn"
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + "_scale"),
bias_attr=ParamAttr(name=bn_name + "_offset"),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class InceptionStem(nn.Layer):
def __init__(self):
super(InceptionStem, self).__init__()
self._conv_1 = ConvBNLayer(
3, 32, 3, stride=2, act="relu", name="conv1_3x3_s2")
self._conv_2 = ConvBNLayer(32, 32, 3, act="relu", name="conv2_3x3_s1")
self._conv_3 = ConvBNLayer(
32, 64, 3, padding=1, act="relu", name="conv3_3x3_s1")
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
self._conv2 = ConvBNLayer(
64, 96, 3, stride=2, act="relu", name="inception_stem1_3x3_s2")
self._conv1_1 = ConvBNLayer(
160, 64, 1, act="relu", name="inception_stem2_3x3_reduce")
self._conv1_2 = ConvBNLayer(
64, 96, 3, act="relu", name="inception_stem2_3x3")
self._conv2_1 = ConvBNLayer(
160, 64, 1, act="relu", name="inception_stem2_1x7_reduce")
self._conv2_2 = ConvBNLayer(
64,
64, (7, 1),
padding=(3, 0),
act="relu",
name="inception_stem2_1x7")
self._conv2_3 = ConvBNLayer(
64,
64, (1, 7),
padding=(0, 3),
act="relu",
name="inception_stem2_7x1")
self._conv2_4 = ConvBNLayer(
64, 96, 3, act="relu", name="inception_stem2_3x3_2")
self._conv3 = ConvBNLayer(
192, 192, 3, stride=2, act="relu", name="inception_stem3_3x3_s2")
def forward(self, inputs):
conv = self._conv_1(inputs)
conv = self._conv_2(conv)
conv = self._conv_3(conv)
pool1 = self._pool(conv)
conv2 = self._conv2(conv)
concat = paddle.concat([pool1, conv2], axis=1)
conv1 = self._conv1_1(concat)
conv1 = self._conv1_2(conv1)
conv2 = self._conv2_1(concat)
conv2 = self._conv2_2(conv2)
conv2 = self._conv2_3(conv2)
conv2 = self._conv2_4(conv2)
concat = paddle.concat([conv1, conv2], axis=1)
conv1 = self._conv3(concat)
pool1 = self._pool(concat)
concat = paddle.concat([conv1, pool1], axis=1)
return concat
class InceptionA(nn.Layer):
def __init__(self, name):
super(InceptionA, self).__init__()
self._pool = AvgPool2D(kernel_size=3, stride=1, padding=1)
self._conv1 = ConvBNLayer(
384, 96, 1, act="relu", name="inception_a" + name + "_1x1")
self._conv2 = ConvBNLayer(
384, 96, 1, act="relu", name="inception_a" + name + "_1x1_2")
self._conv3_1 = ConvBNLayer(
384, 64, 1, act="relu", name="inception_a" + name + "_3x3_reduce")
self._conv3_2 = ConvBNLayer(
64,
96,
3,
padding=1,
act="relu",
name="inception_a" + name + "_3x3")
self._conv4_1 = ConvBNLayer(
384,
64,
1,
act="relu",
name="inception_a" + name + "_3x3_2_reduce")
self._conv4_2 = ConvBNLayer(
64,
96,
3,
padding=1,
act="relu",
name="inception_a" + name + "_3x3_2")
self._conv4_3 = ConvBNLayer(
96,
96,
3,
padding=1,
act="relu",
name="inception_a" + name + "_3x3_3")
def forward(self, inputs):
pool1 = self._pool(inputs)
conv1 = self._conv1(pool1)
conv2 = self._conv2(inputs)
conv3 = self._conv3_1(inputs)
conv3 = self._conv3_2(conv3)
conv4 = self._conv4_1(inputs)
conv4 = self._conv4_2(conv4)
conv4 = self._conv4_3(conv4)
concat = paddle.concat([conv1, conv2, conv3, conv4], axis=1)
return concat
class ReductionA(nn.Layer):
def __init__(self):
super(ReductionA, self).__init__()
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
self._conv2 = ConvBNLayer(
384, 384, 3, stride=2, act="relu", name="reduction_a_3x3")
self._conv3_1 = ConvBNLayer(
384, 192, 1, act="relu", name="reduction_a_3x3_2_reduce")
self._conv3_2 = ConvBNLayer(
192, 224, 3, padding=1, act="relu", name="reduction_a_3x3_2")
self._conv3_3 = ConvBNLayer(
224, 256, 3, stride=2, act="relu", name="reduction_a_3x3_3")
def forward(self, inputs):
pool1 = self._pool(inputs)
conv2 = self._conv2(inputs)
conv3 = self._conv3_1(inputs)
conv3 = self._conv3_2(conv3)
conv3 = self._conv3_3(conv3)
concat = paddle.concat([pool1, conv2, conv3], axis=1)
return concat
class InceptionB(nn.Layer):
def __init__(self, name=None):
super(InceptionB, self).__init__()
self._pool = AvgPool2D(kernel_size=3, stride=1, padding=1)
self._conv1 = ConvBNLayer(
1024, 128, 1, act="relu", name="inception_b" + name + "_1x1")
self._conv2 = ConvBNLayer(
1024, 384, 1, act="relu", name="inception_b" + name + "_1x1_2")
self._conv3_1 = ConvBNLayer(
1024,
192,
1,
act="relu",
name="inception_b" + name + "_1x7_reduce")
self._conv3_2 = ConvBNLayer(
192,
224, (1, 7),
padding=(0, 3),
act="relu",
name="inception_b" + name + "_1x7")
self._conv3_3 = ConvBNLayer(
224,
256, (7, 1),
padding=(3, 0),
act="relu",
name="inception_b" + name + "_7x1")
self._conv4_1 = ConvBNLayer(
1024,
192,
1,
act="relu",
name="inception_b" + name + "_7x1_2_reduce")
self._conv4_2 = ConvBNLayer(
192,
192, (1, 7),
padding=(0, 3),
act="relu",
name="inception_b" + name + "_1x7_2")
self._conv4_3 = ConvBNLayer(
192,
224, (7, 1),
padding=(3, 0),
act="relu",
name="inception_b" + name + "_7x1_2")
self._conv4_4 = ConvBNLayer(
224,
224, (1, 7),
padding=(0, 3),
act="relu",
name="inception_b" + name + "_1x7_3")
self._conv4_5 = ConvBNLayer(
224,
256, (7, 1),
padding=(3, 0),
act="relu",
name="inception_b" + name + "_7x1_3")
def forward(self, inputs):
pool1 = self._pool(inputs)
conv1 = self._conv1(pool1)
conv2 = self._conv2(inputs)
conv3 = self._conv3_1(inputs)
conv3 = self._conv3_2(conv3)
conv3 = self._conv3_3(conv3)
conv4 = self._conv4_1(inputs)
conv4 = self._conv4_2(conv4)
conv4 = self._conv4_3(conv4)
conv4 = self._conv4_4(conv4)
conv4 = self._conv4_5(conv4)
concat = paddle.concat([conv1, conv2, conv3, conv4], axis=1)
return concat
class ReductionB(nn.Layer):
def __init__(self):
super(ReductionB, self).__init__()
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
self._conv2_1 = ConvBNLayer(
1024, 192, 1, act="relu", name="reduction_b_3x3_reduce")
self._conv2_2 = ConvBNLayer(
192, 192, 3, stride=2, act="relu", name="reduction_b_3x3")
self._conv3_1 = ConvBNLayer(
1024, 256, 1, act="relu", name="reduction_b_1x7_reduce")
self._conv3_2 = ConvBNLayer(
256,
256, (1, 7),
padding=(0, 3),
act="relu",
name="reduction_b_1x7")
self._conv3_3 = ConvBNLayer(
256,
320, (7, 1),
padding=(3, 0),
act="relu",
name="reduction_b_7x1")
self._conv3_4 = ConvBNLayer(
320, 320, 3, stride=2, act="relu", name="reduction_b_3x3_2")
def forward(self, inputs):
pool1 = self._pool(inputs)
conv2 = self._conv2_1(inputs)
conv2 = self._conv2_2(conv2)
conv3 = self._conv3_1(inputs)
conv3 = self._conv3_2(conv3)
conv3 = self._conv3_3(conv3)
conv3 = self._conv3_4(conv3)
concat = paddle.concat([pool1, conv2, conv3], axis=1)
return concat
class InceptionC(nn.Layer):
def __init__(self, name=None):
super(InceptionC, self).__init__()
self._pool = AvgPool2D(kernel_size=3, stride=1, padding=1)
self._conv1 = ConvBNLayer(
1536, 256, 1, act="relu", name="inception_c" + name + "_1x1")
self._conv2 = ConvBNLayer(
1536, 256, 1, act="relu", name="inception_c" + name + "_1x1_2")
self._conv3_0 = ConvBNLayer(
1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_3")
self._conv3_1 = ConvBNLayer(
384,
256, (1, 3),
padding=(0, 1),
act="relu",
name="inception_c" + name + "_1x3")
self._conv3_2 = ConvBNLayer(
384,
256, (3, 1),
padding=(1, 0),
act="relu",
name="inception_c" + name + "_3x1")
self._conv4_0 = ConvBNLayer(
1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_4")
self._conv4_00 = ConvBNLayer(
384,
448, (1, 3),
padding=(0, 1),
act="relu",
name="inception_c" + name + "_1x3_2")
self._conv4_000 = ConvBNLayer(
448,
512, (3, 1),
padding=(1, 0),
act="relu",
name="inception_c" + name + "_3x1_2")
self._conv4_1 = ConvBNLayer(
512,
256, (1, 3),
padding=(0, 1),
act="relu",
name="inception_c" + name + "_1x3_3")
self._conv4_2 = ConvBNLayer(
512,
256, (3, 1),
padding=(1, 0),
act="relu",
name="inception_c" + name + "_3x1_3")
def forward(self, inputs):
pool1 = self._pool(inputs)
conv1 = self._conv1(pool1)
conv2 = self._conv2(inputs)
conv3 = self._conv3_0(inputs)
conv3_1 = self._conv3_1(conv3)
conv3_2 = self._conv3_2(conv3)
conv4 = self._conv4_0(inputs)
conv4 = self._conv4_00(conv4)
conv4 = self._conv4_000(conv4)
conv4_1 = self._conv4_1(conv4)
conv4_2 = self._conv4_2(conv4)
concat = paddle.concat(
[conv1, conv2, conv3_1, conv3_2, conv4_1, conv4_2], axis=1)
return concat
class InceptionV4DY(nn.Layer):
def __init__(self, class_num=1000):
super(InceptionV4DY, self).__init__()
self._inception_stem = InceptionStem()
self._inceptionA_1 = InceptionA(name="1")
self._inceptionA_2 = InceptionA(name="2")
self._inceptionA_3 = InceptionA(name="3")
self._inceptionA_4 = InceptionA(name="4")
self._reductionA = ReductionA()
self._inceptionB_1 = InceptionB(name="1")
self._inceptionB_2 = InceptionB(name="2")
self._inceptionB_3 = InceptionB(name="3")
self._inceptionB_4 = InceptionB(name="4")
self._inceptionB_5 = InceptionB(name="5")
self._inceptionB_6 = InceptionB(name="6")
self._inceptionB_7 = InceptionB(name="7")
self._reductionB = ReductionB()
self._inceptionC_1 = InceptionC(name="1")
self._inceptionC_2 = InceptionC(name="2")
self._inceptionC_3 = InceptionC(name="3")
self.avg_pool = AdaptiveAvgPool2D(1)
self._drop = Dropout(p=0.2, mode="downscale_in_infer")
stdv = 1.0 / math.sqrt(1536 * 1.0)
self.out = Linear(
1536,
class_num,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name="final_fc_weights"),
bias_attr=ParamAttr(name="final_fc_offset"))
def forward(self, inputs):
x = self._inception_stem(inputs)
x = self._inceptionA_1(x)
x = self._inceptionA_2(x)
x = self._inceptionA_3(x)
x = self._inceptionA_4(x)
x = self._reductionA(x)
x = self._inceptionB_1(x)
x = self._inceptionB_2(x)
x = self._inceptionB_3(x)
x = self._inceptionB_4(x)
x = self._inceptionB_5(x)
x = self._inceptionB_6(x)
x = self._inceptionB_7(x)
x = self._reductionB(x)
x = self._inceptionC_1(x)
x = self._inceptionC_2(x)
x = self._inceptionC_3(x)
x = self.avg_pool(x)
x = paddle.squeeze(x, axis=[2, 3])
x = self._drop(x)
x = self.out(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def InceptionV4(pretrained=False, use_ssld=False, **kwargs):
model = InceptionV4DY(**kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["InceptionV4"], use_ssld=use_ssld)
return model