290 lines
9.2 KiB
Python
290 lines
9.2 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# reference: https://arxiv.org/abs/1801.04381
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from paddle import ParamAttr
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|
|
|
import math
|
|
|
|
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
|
|
|
MODEL_URLS = {
|
|
"MobileNetV2_x0_25":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams",
|
|
"MobileNetV2_x0_5":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams",
|
|
"MobileNetV2_x0_75":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams",
|
|
"MobileNetV2":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams",
|
|
"MobileNetV2_x1_5":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams",
|
|
"MobileNetV2_x2_0":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams"
|
|
}
|
|
|
|
__all__ = list(MODEL_URLS.keys())
|
|
|
|
|
|
class ConvBNLayer(nn.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
filter_size,
|
|
num_filters,
|
|
stride,
|
|
padding,
|
|
channels=None,
|
|
num_groups=1,
|
|
name=None,
|
|
use_cudnn=True):
|
|
super(ConvBNLayer, self).__init__()
|
|
|
|
self._conv = Conv2D(
|
|
in_channels=num_channels,
|
|
out_channels=num_filters,
|
|
kernel_size=filter_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
groups=num_groups,
|
|
weight_attr=ParamAttr(name=name + "_weights"),
|
|
bias_attr=False)
|
|
|
|
self._batch_norm = BatchNorm(
|
|
num_filters,
|
|
param_attr=ParamAttr(name=name + "_bn_scale"),
|
|
bias_attr=ParamAttr(name=name + "_bn_offset"),
|
|
moving_mean_name=name + "_bn_mean",
|
|
moving_variance_name=name + "_bn_variance")
|
|
|
|
def forward(self, inputs, if_act=True):
|
|
y = self._conv(inputs)
|
|
y = self._batch_norm(y)
|
|
if if_act:
|
|
y = F.relu6(y)
|
|
return y
|
|
|
|
|
|
class InvertedResidualUnit(nn.Layer):
|
|
def __init__(self, num_channels, num_in_filter, num_filters, stride,
|
|
filter_size, padding, expansion_factor, name):
|
|
super(InvertedResidualUnit, self).__init__()
|
|
num_expfilter = int(round(num_in_filter * expansion_factor))
|
|
self._expand_conv = ConvBNLayer(
|
|
num_channels=num_channels,
|
|
num_filters=num_expfilter,
|
|
filter_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
num_groups=1,
|
|
name=name + "_expand")
|
|
|
|
self._bottleneck_conv = ConvBNLayer(
|
|
num_channels=num_expfilter,
|
|
num_filters=num_expfilter,
|
|
filter_size=filter_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
num_groups=num_expfilter,
|
|
use_cudnn=False,
|
|
name=name + "_dwise")
|
|
|
|
self._linear_conv = ConvBNLayer(
|
|
num_channels=num_expfilter,
|
|
num_filters=num_filters,
|
|
filter_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
num_groups=1,
|
|
name=name + "_linear")
|
|
|
|
def forward(self, inputs, ifshortcut):
|
|
y = self._expand_conv(inputs, if_act=True)
|
|
y = self._bottleneck_conv(y, if_act=True)
|
|
y = self._linear_conv(y, if_act=False)
|
|
if ifshortcut:
|
|
y = paddle.add(inputs, y)
|
|
return y
|
|
|
|
|
|
class InvresiBlocks(nn.Layer):
|
|
def __init__(self, in_c, t, c, n, s, name):
|
|
super(InvresiBlocks, self).__init__()
|
|
|
|
self._first_block = InvertedResidualUnit(
|
|
num_channels=in_c,
|
|
num_in_filter=in_c,
|
|
num_filters=c,
|
|
stride=s,
|
|
filter_size=3,
|
|
padding=1,
|
|
expansion_factor=t,
|
|
name=name + "_1")
|
|
|
|
self._block_list = []
|
|
for i in range(1, n):
|
|
block = self.add_sublayer(
|
|
name + "_" + str(i + 1),
|
|
sublayer=InvertedResidualUnit(
|
|
num_channels=c,
|
|
num_in_filter=c,
|
|
num_filters=c,
|
|
stride=1,
|
|
filter_size=3,
|
|
padding=1,
|
|
expansion_factor=t,
|
|
name=name + "_" + str(i + 1)))
|
|
self._block_list.append(block)
|
|
|
|
def forward(self, inputs):
|
|
y = self._first_block(inputs, ifshortcut=False)
|
|
for block in self._block_list:
|
|
y = block(y, ifshortcut=True)
|
|
return y
|
|
|
|
|
|
class MobileNet(nn.Layer):
|
|
def __init__(self, class_num=1000, scale=1.0, prefix_name=""):
|
|
super(MobileNet, self).__init__()
|
|
self.scale = scale
|
|
self.class_num = class_num
|
|
|
|
bottleneck_params_list = [
|
|
(1, 16, 1, 1),
|
|
(6, 24, 2, 2),
|
|
(6, 32, 3, 2),
|
|
(6, 64, 4, 2),
|
|
(6, 96, 3, 1),
|
|
(6, 160, 3, 2),
|
|
(6, 320, 1, 1),
|
|
]
|
|
|
|
self.conv1 = ConvBNLayer(
|
|
num_channels=3,
|
|
num_filters=int(32 * scale),
|
|
filter_size=3,
|
|
stride=2,
|
|
padding=1,
|
|
name=prefix_name + "conv1_1")
|
|
|
|
self.block_list = []
|
|
i = 1
|
|
in_c = int(32 * scale)
|
|
for layer_setting in bottleneck_params_list:
|
|
t, c, n, s = layer_setting
|
|
i += 1
|
|
block = self.add_sublayer(
|
|
prefix_name + "conv" + str(i),
|
|
sublayer=InvresiBlocks(
|
|
in_c=in_c,
|
|
t=t,
|
|
c=int(c * scale),
|
|
n=n,
|
|
s=s,
|
|
name=prefix_name + "conv" + str(i)))
|
|
self.block_list.append(block)
|
|
in_c = int(c * scale)
|
|
|
|
self.out_c = int(1280 * scale) if scale > 1.0 else 1280
|
|
self.conv9 = ConvBNLayer(
|
|
num_channels=in_c,
|
|
num_filters=self.out_c,
|
|
filter_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
name=prefix_name + "conv9")
|
|
|
|
self.pool2d_avg = AdaptiveAvgPool2D(1)
|
|
|
|
self.out = Linear(
|
|
self.out_c,
|
|
class_num,
|
|
weight_attr=ParamAttr(name=prefix_name + "fc10_weights"),
|
|
bias_attr=ParamAttr(name=prefix_name + "fc10_offset"))
|
|
|
|
def forward(self, inputs):
|
|
y = self.conv1(inputs, if_act=True)
|
|
for block in self.block_list:
|
|
y = block(y)
|
|
y = self.conv9(y, if_act=True)
|
|
y = self.pool2d_avg(y)
|
|
y = paddle.flatten(y, start_axis=1, stop_axis=-1)
|
|
y = self.out(y)
|
|
return y
|
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
|
|
if pretrained is False:
|
|
pass
|
|
elif pretrained is True:
|
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
|
|
elif isinstance(pretrained, str):
|
|
load_dygraph_pretrain(model, pretrained)
|
|
else:
|
|
raise RuntimeError(
|
|
"pretrained type is not available. Please use `string` or `boolean` type."
|
|
)
|
|
|
|
|
|
def MobileNetV2_x0_25(pretrained=False, use_ssld=False, **kwargs):
|
|
model = MobileNet(scale=0.25, **kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["MobileNetV2_x0_25"], use_ssld=use_ssld)
|
|
return model
|
|
|
|
|
|
def MobileNetV2_x0_5(pretrained=False, use_ssld=False, **kwargs):
|
|
model = MobileNet(scale=0.5, **kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["MobileNetV2_x0_5"], use_ssld=use_ssld)
|
|
return model
|
|
|
|
|
|
def MobileNetV2_x0_75(pretrained=False, use_ssld=False, **kwargs):
|
|
model = MobileNet(scale=0.75, **kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["MobileNetV2_x0_75"], use_ssld=use_ssld)
|
|
return model
|
|
|
|
|
|
def MobileNetV2(pretrained=False, use_ssld=False, **kwargs):
|
|
model = MobileNet(scale=1.0, **kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["MobileNetV2"], use_ssld=use_ssld)
|
|
return model
|
|
|
|
|
|
def MobileNetV2_x1_5(pretrained=False, use_ssld=False, **kwargs):
|
|
model = MobileNet(scale=1.5, **kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["MobileNetV2_x1_5"], use_ssld=use_ssld)
|
|
return model
|
|
|
|
|
|
def MobileNetV2_x2_0(pretrained=False, use_ssld=False, **kwargs):
|
|
model = MobileNet(scale=2.0, **kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["MobileNetV2_x2_0"], use_ssld=use_ssld)
|
|
return model
|