494 lines
16 KiB
Python
494 lines
16 KiB
Python
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# Code was heavily based on https://github.com/whai362/PVT
|
|
# reference: https://arxiv.org/abs/2106.13797
|
|
|
|
from functools import partial
|
|
import math
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle.nn.initializer import TruncatedNormal, Constant
|
|
|
|
from .vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity, drop_path
|
|
|
|
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
|
|
|
MODEL_URLS = {
|
|
"PVT_V2_B0":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B0_pretrained.pdparams",
|
|
"PVT_V2_B1":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B1_pretrained.pdparams",
|
|
"PVT_V2_B2":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_pretrained.pdparams",
|
|
"PVT_V2_B2_Linear":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_Linear_pretrained.pdparams",
|
|
"PVT_V2_B3":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B3_pretrained.pdparams",
|
|
"PVT_V2_B4":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B4_pretrained.pdparams",
|
|
"PVT_V2_B5":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B5_pretrained.pdparams",
|
|
}
|
|
|
|
__all__ = list(MODEL_URLS.keys())
|
|
|
|
|
|
@paddle.jit.not_to_static
|
|
def swapdim(x, dim1, dim2):
|
|
a = list(range(len(x.shape)))
|
|
a[dim1], a[dim2] = a[dim2], a[dim1]
|
|
return x.transpose(a)
|
|
|
|
|
|
class Mlp(nn.Layer):
|
|
def __init__(self,
|
|
in_features,
|
|
hidden_features=None,
|
|
out_features=None,
|
|
act_layer=nn.GELU,
|
|
drop=0.,
|
|
linear=False):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.dwconv = DWConv(hidden_features)
|
|
self.act = act_layer()
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
self.linear = linear
|
|
if self.linear:
|
|
self.relu = nn.ReLU()
|
|
|
|
def forward(self, x, H, W):
|
|
x = self.fc1(x)
|
|
if self.linear:
|
|
x = self.relu(x)
|
|
x = self.dwconv(x, H, W)
|
|
x = self.act(x)
|
|
x = self.drop(x)
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
|
|
class Attention(nn.Layer):
|
|
def __init__(self,
|
|
dim,
|
|
num_heads=8,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
attn_drop=0.,
|
|
proj_drop=0.,
|
|
sr_ratio=1,
|
|
linear=False):
|
|
super().__init__()
|
|
assert dim % num_heads == 0
|
|
|
|
self.dim = dim
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim**-0.5
|
|
|
|
self.q = nn.Linear(dim, dim, bias_attr=qkv_bias)
|
|
self.kv = nn.Linear(dim, dim * 2, bias_attr=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
self.linear = linear
|
|
self.sr_ratio = sr_ratio
|
|
if not linear:
|
|
if sr_ratio > 1:
|
|
self.sr = nn.Conv2D(
|
|
dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
|
self.norm = nn.LayerNorm(dim)
|
|
else:
|
|
self.pool = nn.AdaptiveAvgPool2D(7)
|
|
self.sr = nn.Conv2D(dim, dim, kernel_size=1, stride=1)
|
|
self.norm = nn.LayerNorm(dim)
|
|
self.act = nn.GELU()
|
|
|
|
def forward(self, x, H, W):
|
|
B, N, C = x.shape
|
|
q = self.q(x).reshape(
|
|
[B, N, self.num_heads, C // self.num_heads]).transpose(
|
|
[0, 2, 1, 3])
|
|
|
|
if not self.linear:
|
|
if self.sr_ratio > 1:
|
|
x_ = x.transpose([0, 2, 1]).reshape([B, C, H, W])
|
|
x_ = self.sr(x_)
|
|
h_, w_ = x_.shape[-2:]
|
|
x_ = x_.reshape([B, C, h_ * w_]).transpose([0, 2, 1])
|
|
x_ = self.norm(x_)
|
|
kv = self.kv(x_)
|
|
kv = kv.reshape([
|
|
B, kv.shape[2] * kv.shape[1] // 2 // C, 2, self.num_heads,
|
|
C // self.num_heads
|
|
]).transpose([2, 0, 3, 1, 4])
|
|
else:
|
|
kv = self.kv(x)
|
|
kv = kv.reshape([
|
|
B, kv.shape[2] * kv.shape[1] // 2 // C, 2, self.num_heads,
|
|
C // self.num_heads
|
|
]).transpose([2, 0, 3, 1, 4])
|
|
else:
|
|
x_ = x.transpose([0, 2, 1]).reshape([B, C, H, W])
|
|
x_ = self.sr(self.pool(x_))
|
|
x_ = x_.reshape([B, C, x_.shape[2] * x_.shape[3]]).transpose(
|
|
[0, 2, 1])
|
|
x_ = self.norm(x_)
|
|
x_ = self.act(x_)
|
|
kv = self.kv(x_)
|
|
kv = kv.reshape([
|
|
B, kv.shape[2] * kv.shape[1] // 2 // C, 2, self.num_heads,
|
|
C // self.num_heads
|
|
]).transpose([2, 0, 3, 1, 4])
|
|
k, v = kv[0], kv[1]
|
|
|
|
attn = (q @swapdim(k, -2, -1)) * self.scale
|
|
attn = F.softmax(attn, axis=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = swapdim((attn @v), 1, 2).reshape([B, N, C])
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
class Block(nn.Layer):
|
|
def __init__(self,
|
|
dim,
|
|
num_heads,
|
|
mlp_ratio=4.,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop=0.,
|
|
attn_drop=0.,
|
|
drop_path=0.,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.LayerNorm,
|
|
sr_ratio=1,
|
|
linear=False):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention(
|
|
dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
attn_drop=attn_drop,
|
|
proj_drop=drop,
|
|
sr_ratio=sr_ratio,
|
|
linear=linear)
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
linear=linear)
|
|
|
|
def forward(self, x, H, W):
|
|
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
|
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
|
|
|
return x
|
|
|
|
|
|
class OverlapPatchEmbed(nn.Layer):
|
|
""" Image to Patch Embedding
|
|
"""
|
|
|
|
def __init__(self,
|
|
img_size=224,
|
|
patch_size=7,
|
|
stride=4,
|
|
in_chans=3,
|
|
embed_dim=768):
|
|
super().__init__()
|
|
img_size = to_2tuple(img_size)
|
|
patch_size = to_2tuple(patch_size)
|
|
|
|
self.img_size = img_size
|
|
self.patch_size = patch_size
|
|
self.H, self.W = img_size[0] // patch_size[0], img_size[
|
|
1] // patch_size[1]
|
|
self.num_patches = self.H * self.W
|
|
self.proj = nn.Conv2D(
|
|
in_chans,
|
|
embed_dim,
|
|
kernel_size=patch_size,
|
|
stride=stride,
|
|
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
|
self.norm = nn.LayerNorm(embed_dim)
|
|
|
|
def forward(self, x):
|
|
x = self.proj(x)
|
|
_, _, H, W = x.shape
|
|
x = x.flatten(2)
|
|
x = swapdim(x, 1, 2)
|
|
x = self.norm(x)
|
|
|
|
return x, H, W
|
|
|
|
|
|
class PyramidVisionTransformerV2(nn.Layer):
|
|
def __init__(self,
|
|
img_size=224,
|
|
patch_size=16,
|
|
in_chans=3,
|
|
class_num=1000,
|
|
embed_dims=[64, 128, 256, 512],
|
|
num_heads=[1, 2, 4, 8],
|
|
mlp_ratios=[4, 4, 4, 4],
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop_rate=0.,
|
|
attn_drop_rate=0.,
|
|
drop_path_rate=0.,
|
|
norm_layer=nn.LayerNorm,
|
|
depths=[3, 4, 6, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
num_stages=4,
|
|
linear=False):
|
|
super().__init__()
|
|
self.class_num = class_num
|
|
self.depths = depths
|
|
self.num_stages = num_stages
|
|
|
|
dpr = [x for x in paddle.linspace(0, drop_path_rate, sum(depths))
|
|
] # stochastic depth decay rule
|
|
cur = 0
|
|
|
|
for i in range(num_stages):
|
|
patch_embed = OverlapPatchEmbed(
|
|
img_size=img_size if i == 0 else img_size // (2**(i + 1)),
|
|
patch_size=7 if i == 0 else 3,
|
|
stride=4 if i == 0 else 2,
|
|
in_chans=in_chans if i == 0 else embed_dims[i - 1],
|
|
embed_dim=embed_dims[i])
|
|
|
|
block = nn.LayerList([
|
|
Block(
|
|
dim=embed_dims[i],
|
|
num_heads=num_heads[i],
|
|
mlp_ratio=mlp_ratios[i],
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=dpr[cur + j],
|
|
norm_layer=norm_layer,
|
|
sr_ratio=sr_ratios[i],
|
|
linear=linear) for j in range(depths[i])
|
|
])
|
|
norm = norm_layer(embed_dims[i])
|
|
cur += depths[i]
|
|
|
|
setattr(self, f"patch_embed{i + 1}", patch_embed)
|
|
setattr(self, f"block{i + 1}", block)
|
|
setattr(self, f"norm{i + 1}", norm)
|
|
|
|
# classification head
|
|
self.head = nn.Linear(embed_dims[3],
|
|
class_num) if class_num > 0 else Identity()
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
zeros_(m.bias)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
zeros_(m.bias)
|
|
ones_(m.weight)
|
|
|
|
def forward_features(self, x):
|
|
B = x.shape[0]
|
|
|
|
for i in range(self.num_stages):
|
|
patch_embed = getattr(self, f"patch_embed{i + 1}")
|
|
block = getattr(self, f"block{i + 1}")
|
|
norm = getattr(self, f"norm{i + 1}")
|
|
x, H, W = patch_embed(x)
|
|
for blk in block:
|
|
x = blk(x, H, W)
|
|
x = norm(x)
|
|
if i != self.num_stages - 1:
|
|
x = x.reshape([B, H, W, x.shape[2]]).transpose([0, 3, 1, 2])
|
|
|
|
return x.mean(axis=1)
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.head(x)
|
|
|
|
return x
|
|
|
|
|
|
class DWConv(nn.Layer):
|
|
def __init__(self, dim=768):
|
|
super().__init__()
|
|
self.dwconv = nn.Conv2D(dim, dim, 3, 1, 1, bias_attr=True, groups=dim)
|
|
|
|
def forward(self, x, H, W):
|
|
B, N, C = x.shape
|
|
x = swapdim(x, 1, 2)
|
|
x = x.reshape([B, C, H, W])
|
|
x = self.dwconv(x)
|
|
x = x.flatten(2)
|
|
x = swapdim(x, 1, 2)
|
|
|
|
return x
|
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
|
|
if pretrained is False:
|
|
pass
|
|
elif pretrained is True:
|
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
|
|
elif isinstance(pretrained, str):
|
|
load_dygraph_pretrain(model, pretrained)
|
|
else:
|
|
raise RuntimeError(
|
|
"pretrained type is not available. Please use `string` or `boolean` type."
|
|
)
|
|
|
|
|
|
def PVT_V2_B0(pretrained=False, use_ssld=False, **kwargs):
|
|
model = PyramidVisionTransformerV2(
|
|
patch_size=4,
|
|
embed_dims=[32, 64, 160, 256],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(
|
|
nn.LayerNorm, epsilon=1e-6),
|
|
depths=[2, 2, 2, 2],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
**kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["PVT_V2_B0"], use_ssld=use_ssld)
|
|
return model
|
|
|
|
|
|
def PVT_V2_B1(pretrained=False, use_ssld=False, **kwargs):
|
|
model = PyramidVisionTransformerV2(
|
|
patch_size=4,
|
|
embed_dims=[64, 128, 320, 512],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(
|
|
nn.LayerNorm, epsilon=1e-6),
|
|
depths=[2, 2, 2, 2],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
**kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["PVT_V2_B1"], use_ssld=use_ssld)
|
|
return model
|
|
|
|
|
|
def PVT_V2_B2(pretrained=False, use_ssld=False, **kwargs):
|
|
model = PyramidVisionTransformerV2(
|
|
patch_size=4,
|
|
embed_dims=[64, 128, 320, 512],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(
|
|
nn.LayerNorm, epsilon=1e-6),
|
|
depths=[3, 4, 6, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
**kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["PVT_V2_B2"], use_ssld=use_ssld)
|
|
return model
|
|
|
|
|
|
def PVT_V2_B3(pretrained=False, use_ssld=False, **kwargs):
|
|
model = PyramidVisionTransformerV2(
|
|
patch_size=4,
|
|
embed_dims=[64, 128, 320, 512],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(
|
|
nn.LayerNorm, epsilon=1e-6),
|
|
depths=[3, 4, 18, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
**kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["PVT_V2_B3"], use_ssld=use_ssld)
|
|
return model
|
|
|
|
|
|
def PVT_V2_B4(pretrained=False, use_ssld=False, **kwargs):
|
|
model = PyramidVisionTransformerV2(
|
|
patch_size=4,
|
|
embed_dims=[64, 128, 320, 512],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(
|
|
nn.LayerNorm, epsilon=1e-6),
|
|
depths=[3, 8, 27, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
**kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["PVT_V2_B4"], use_ssld=use_ssld)
|
|
return model
|
|
|
|
|
|
def PVT_V2_B5(pretrained=False, use_ssld=False, **kwargs):
|
|
model = PyramidVisionTransformerV2(
|
|
patch_size=4,
|
|
embed_dims=[64, 128, 320, 512],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[4, 4, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(
|
|
nn.LayerNorm, epsilon=1e-6),
|
|
depths=[3, 6, 40, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
**kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["PVT_V2_B5"], use_ssld=use_ssld)
|
|
return model
|
|
|
|
|
|
def PVT_V2_B2_Linear(pretrained=False, use_ssld=False, **kwargs):
|
|
model = PyramidVisionTransformerV2(
|
|
patch_size=4,
|
|
embed_dims=[64, 128, 320, 512],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(
|
|
nn.LayerNorm, epsilon=1e-6),
|
|
depths=[3, 4, 6, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
linear=True,
|
|
**kwargs)
|
|
_load_pretrained(
|
|
pretrained, model, MODEL_URLS["PVT_V2_B2_Linear"], use_ssld=use_ssld)
|
|
return model
|