PaddleClas/ppcls/arch/backbone/model_zoo/van.py

319 lines
10 KiB
Python

# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was heavily based on https://github.com/Visual-Attention-Network/VAN-Classification
# reference: https://arxiv.org/abs/2202.09741
from functools import partial
import math
import paddle
import paddle.nn as nn
from paddle.nn.initializer import TruncatedNormal, Constant
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"VAN_tiny": "", # TODO
}
__all__ = list(MODEL_URLS.keys())
trunc_normal_ = TruncatedNormal(std=.02)
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)
def drop_path(x, drop_prob=0., training=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
class DropPath(nn.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
@paddle.jit.not_to_static
def swapdim(x, dim1, dim2):
a = list(range(len(x.shape)))
a[dim1], a[dim2] = a[dim2], a[dim1]
return x.transpose(a)
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2D(in_features, hidden_features, 1)
self.dwconv = DWConv(hidden_features)
self.act = act_layer()
self.fc2 = nn.Conv2D(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.dwconv(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class LKA(nn.Layer):
def __init__(self, dim):
super().__init__()
self.conv0 = nn.Conv2D(dim, dim, 5, padding=2, groups=dim)
self.conv_spatial = nn.Conv2D(
dim, dim, 7, stride=1, padding=9, groups=dim, dilation=3)
self.conv1 = nn.Conv2D(dim, dim, 1)
def forward(self, x):
attn = self.conv0(x)
attn = self.conv_spatial(attn)
attn = self.conv1(attn)
return x * attn
class Attention(nn.Layer):
def __init__(self, d_model):
super().__init__()
self.proj_1 = nn.Conv2D(d_model, d_model, 1)
self.activation = nn.GELU()
self.spatial_gating_unit = LKA(d_model)
self.proj_2 = nn.Conv2D(d_model, d_model, 1)
def forward(self, x):
shorcut = x
x = self.proj_1(x)
x = self.activation(x)
x = self.spatial_gating_unit(x)
x = self.proj_2(x)
x = x + shorcut
return x
class Block(nn.Layer):
def __init__(self,
dim,
mlp_ratio=4.,
drop=0.,
drop_path=0.,
act_layer=nn.GELU):
super().__init__()
self.norm1 = nn.BatchNorm2D(dim)
self.attn = Attention(dim)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = nn.BatchNorm2D(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
layer_scale_init_value = 1e-2
self.layer_scale_1 = self.create_parameter(
shape=[dim, 1, 1],
default_initializer=Constant(value=layer_scale_init_value))
self.layer_scale_2 = self.create_parameter(
shape=[dim, 1, 1],
default_initializer=Constant(value=layer_scale_init_value))
def forward(self, x):
x = x + self.drop_path(self.layer_scale_1 * self.attn(self.norm1(x)))
x = x + self.drop_path(self.layer_scale_2 * self.mlp(self.norm2(x)))
return x
class OverlapPatchEmbed(nn.Layer):
""" Image to Patch Embedding
"""
def __init__(self,
img_size=224,
patch_size=7,
stride=4,
in_chans=3,
embed_dim=768):
super().__init__()
self.proj = nn.Conv2D(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=stride,
padding=patch_size // 2)
self.norm = nn.BatchNorm2D(embed_dim)
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = self.norm(x)
return x, H, W
class VAN(nn.Layer):
r""" VAN
A PaddlePaddle impl of : `Visual Attention Network` -
https://arxiv.org/pdf/2202.09741.pdf
"""
def __init__(self,
img_size=224,
in_chans=3,
class_num=1000,
embed_dims=[64, 128, 256, 512],
mlp_ratios=[4, 4, 4, 4],
drop_rate=0.,
drop_path_rate=0.,
norm_layer=nn.LayerNorm,
depths=[3, 4, 6, 3],
num_stages=4,
flag=False):
super().__init__()
if flag == False:
self.class_num = class_num
self.depths = depths
self.num_stages = num_stages
dpr = [x for x in paddle.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
cur = 0
for i in range(num_stages):
patch_embed = OverlapPatchEmbed(
img_size=img_size if i == 0 else img_size // (2**(i + 1)),
patch_size=7 if i == 0 else 3,
stride=4 if i == 0 else 2,
in_chans=in_chans if i == 0 else embed_dims[i - 1],
embed_dim=embed_dims[i])
block = nn.LayerList([
Block(
dim=embed_dims[i],
mlp_ratio=mlp_ratios[i],
drop=drop_rate,
drop_path=dpr[cur + j]) for j in range(depths[i])
])
norm = norm_layer(embed_dims[i])
cur += depths[i]
setattr(self, f"patch_embed{i + 1}", patch_embed)
setattr(self, f"block{i + 1}", block)
setattr(self, f"norm{i + 1}", norm)
# classification head
self.head = nn.Linear(embed_dims[3],
class_num) if class_num > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
elif isinstance(m, nn.Conv2D):
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
fan_out //= m._groups
m.weight.set_value(
paddle.normal(
std=math.sqrt(2.0 / fan_out), shape=m.weight.shape))
if m.bias is not None:
zeros_(m.bias)
def forward_features(self, x):
B = x.shape[0]
for i in range(self.num_stages):
patch_embed = getattr(self, f"patch_embed{i + 1}")
block = getattr(self, f"block{i + 1}")
norm = getattr(self, f"norm{i + 1}")
x, H, W = patch_embed(x)
for blk in block:
x = blk(x)
x = x.flatten(2)
x = swapdim(x, 1, 2)
x = norm(x)
if i != self.num_stages - 1:
x = x.reshape([B, H, W, x.shape[2]]).transpose([0, 3, 1, 2])
return x.mean(axis=1)
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
class DWConv(nn.Layer):
def __init__(self, dim=768):
super().__init__()
self.dwconv = nn.Conv2D(dim, dim, 3, 1, 1, bias_attr=True, groups=dim)
def forward(self, x):
x = self.dwconv(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def VAN_tiny(pretrained=False, use_ssld=False, **kwargs):
model = VAN(embed_dims=[32, 64, 160, 256],
mlp_ratios=[8, 8, 4, 4],
norm_layer=partial(
nn.LayerNorm, epsilon=1e-6),
depths=[3, 3, 5, 2],
**kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["VAN_tiny"], use_ssld=use_ssld)
return model