PaddleClas/ppcls/arch/slim/prune.py

65 lines
2.3 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import paddle
from ...utils import logger
def prune_model(config, model):
if config.get("Slim", False) and config["Slim"].get("prune", False):
import paddleslim
prune_method_name = config["Slim"]["prune"]["name"].lower()
assert prune_method_name in [
"fpgm", "l1_norm"
], "The prune methods only support 'fpgm' and 'l1_norm'"
if prune_method_name == "fpgm":
model.pruner = paddleslim.dygraph.FPGMFilterPruner(
model, [1] + config["Global"]["image_shape"])
else:
model.pruner = paddleslim.dygraph.L1NormFilterPruner(
model, [1] + config["Global"]["image_shape"])
# prune model
_prune_model(config, model)
else:
model.pruner = None
def _prune_model(config, model):
from paddleslim.analysis import dygraph_flops as flops
logger.info("FLOPs before pruning: {}GFLOPs".format(
flops(model, [1] + config["Global"]["image_shape"]) / 1e9))
model.eval()
params = []
for sublayer in model.sublayers():
for param in sublayer.parameters(include_sublayers=False):
if isinstance(sublayer, paddle.nn.Conv2D):
params.append(param.name)
ratios = {}
for param in params:
ratios[param] = config["Slim"]["prune"]["pruned_ratio"]
plan = model.pruner.prune_vars(ratios, [0])
logger.info("FLOPs after pruning: {}GFLOPs; pruned ratio: {}".format(
flops(model, [1] + config["Global"]["image_shape"]) / 1e9,
plan.pruned_flops))
for param in model.parameters():
if "conv2d" in param.name:
logger.info("{}\t{}".format(param.name, param.shape))
model.train()