167 lines
6.1 KiB
Python
167 lines
6.1 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import errno
|
|
import os
|
|
|
|
import paddle
|
|
from . import logger
|
|
from .download import get_weights_path_from_url
|
|
|
|
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
|
|
|
|
|
|
def _mkdir_if_not_exist(path):
|
|
"""
|
|
mkdir if not exists, ignore the exception when multiprocess mkdir together
|
|
"""
|
|
if not os.path.exists(path):
|
|
try:
|
|
os.makedirs(path)
|
|
except OSError as e:
|
|
if e.errno == errno.EEXIST and os.path.isdir(path):
|
|
logger.warning(
|
|
'be happy if some process has already created {}'.format(
|
|
path))
|
|
else:
|
|
raise OSError('Failed to mkdir {}'.format(path))
|
|
|
|
|
|
def _extract_student_weights(all_params, student_prefix="Student."):
|
|
s_params = {
|
|
key[len(student_prefix):]: all_params[key]
|
|
for key in all_params if student_prefix in key
|
|
}
|
|
return s_params
|
|
|
|
|
|
def load_dygraph_pretrain(model, path=None):
|
|
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
|
|
raise ValueError("Model pretrain path {}.pdparams does not "
|
|
"exists.".format(path))
|
|
param_state_dict = paddle.load(path + ".pdparams")
|
|
if isinstance(model, list):
|
|
for m in model:
|
|
if hasattr(m, 'set_dict'):
|
|
m.set_dict(param_state_dict)
|
|
else:
|
|
model.set_dict(param_state_dict)
|
|
return
|
|
|
|
|
|
def load_dygraph_pretrain_from_url(model, pretrained_url, use_ssld=False):
|
|
if use_ssld:
|
|
pretrained_url = pretrained_url.replace("_pretrained",
|
|
"_ssld_pretrained")
|
|
local_weight_path = get_weights_path_from_url(pretrained_url).replace(
|
|
".pdparams", "")
|
|
load_dygraph_pretrain(model, path=local_weight_path)
|
|
return
|
|
|
|
|
|
def load_distillation_model(model, pretrained_model):
|
|
logger.info("In distillation mode, teacher model will be "
|
|
"loaded firstly before student model.")
|
|
|
|
if not isinstance(pretrained_model, list):
|
|
pretrained_model = [pretrained_model]
|
|
|
|
teacher = model.teacher if hasattr(model,
|
|
"teacher") else model._layers.teacher
|
|
student = model.student if hasattr(model,
|
|
"student") else model._layers.student
|
|
load_dygraph_pretrain(teacher, path=pretrained_model[0])
|
|
logger.info("Finish initing teacher model from {}".format(
|
|
pretrained_model))
|
|
# load student model
|
|
if len(pretrained_model) >= 2:
|
|
load_dygraph_pretrain(student, path=pretrained_model[1])
|
|
logger.info("Finish initing student model from {}".format(
|
|
pretrained_model))
|
|
|
|
|
|
def init_model(config, net, optimizer=None, loss: paddle.nn.Layer=None):
|
|
"""
|
|
load model from checkpoint or pretrained_model
|
|
"""
|
|
checkpoints = config.get('checkpoints')
|
|
if checkpoints and optimizer is not None:
|
|
assert os.path.exists(checkpoints + ".pdparams"), \
|
|
"Given dir {}.pdparams not exist.".format(checkpoints)
|
|
assert os.path.exists(checkpoints + ".pdopt"), \
|
|
"Given dir {}.pdopt not exist.".format(checkpoints)
|
|
# load state dict
|
|
opti_dict = paddle.load(checkpoints + ".pdopt")
|
|
para_dict = paddle.load(checkpoints + ".pdparams")
|
|
metric_dict = paddle.load(checkpoints + ".pdstates")
|
|
# set state dict
|
|
net.set_state_dict(para_dict)
|
|
loss.set_state_dict(para_dict)
|
|
for i in range(len(optimizer)):
|
|
optimizer[i].set_state_dict(opti_dict[i] if isinstance(
|
|
opti_dict, list) else opti_dict)
|
|
logger.info("Finish load checkpoints from {}".format(checkpoints))
|
|
return metric_dict
|
|
|
|
pretrained_model = config.get('pretrained_model')
|
|
use_distillation = config.get('use_distillation', False)
|
|
if pretrained_model:
|
|
if use_distillation:
|
|
load_distillation_model(net, pretrained_model)
|
|
else: # common load
|
|
load_dygraph_pretrain(net, path=pretrained_model)
|
|
logger.info("Finish load pretrained model from {}".format(
|
|
pretrained_model))
|
|
|
|
|
|
def save_model(net,
|
|
optimizer,
|
|
metric_info,
|
|
model_path,
|
|
model_name="",
|
|
prefix='ppcls',
|
|
loss: paddle.nn.Layer=None,
|
|
save_student_model=False):
|
|
"""
|
|
save model to the target path
|
|
"""
|
|
if paddle.distributed.get_rank() != 0:
|
|
return
|
|
model_path = os.path.join(model_path, model_name)
|
|
_mkdir_if_not_exist(model_path)
|
|
model_path = os.path.join(model_path, prefix)
|
|
|
|
params_state_dict = net.state_dict()
|
|
if loss is not None:
|
|
loss_state_dict = loss.state_dict()
|
|
keys_inter = set(params_state_dict.keys()) & set(loss_state_dict.keys(
|
|
))
|
|
assert len(keys_inter) == 0, \
|
|
f"keys in model and loss state_dict must be unique, but got intersection {keys_inter}"
|
|
params_state_dict.update(loss_state_dict)
|
|
|
|
if save_student_model:
|
|
s_params = _extract_student_weights(params_state_dict)
|
|
if len(s_params) > 0:
|
|
paddle.save(s_params, model_path + "_student.pdparams")
|
|
|
|
paddle.save(params_state_dict, model_path + ".pdparams")
|
|
paddle.save([opt.state_dict() for opt in optimizer], model_path + ".pdopt")
|
|
paddle.save(metric_info, model_path + ".pdstates")
|
|
logger.info("Already save model in {}".format(model_path))
|