172 lines
5.8 KiB
Python
172 lines
5.8 KiB
Python
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
|
|
import copy
|
|
import importlib
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
from paddle.jit import to_static
|
|
from paddle.static import InputSpec
|
|
|
|
from . import backbone, gears
|
|
from .backbone import *
|
|
from .gears import build_gear
|
|
from .utils import *
|
|
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
|
from ppcls.utils import logger
|
|
from ppcls.utils.save_load import load_dygraph_pretrain
|
|
from ppcls.arch.slim import prune_model, quantize_model
|
|
from ppcls.arch.distill.afd_attention import LinearTransformStudent, LinearTransformTeacher
|
|
|
|
__all__ = ["build_model", "RecModel", "DistillationModel", "AttentionModel"]
|
|
|
|
|
|
def build_model(config, mode="train"):
|
|
arch_config = copy.deepcopy(config["Arch"])
|
|
model_type = arch_config.pop("name")
|
|
use_sync_bn = arch_config.pop("use_sync_bn", False)
|
|
mod = importlib.import_module(__name__)
|
|
arch = getattr(mod, model_type)(**arch_config)
|
|
if use_sync_bn:
|
|
arch = nn.SyncBatchNorm.convert_sync_batchnorm(arch)
|
|
|
|
if isinstance(arch, TheseusLayer):
|
|
prune_model(config, arch)
|
|
quantize_model(config, arch, mode)
|
|
|
|
logger.info("The FLOPs and Params of Arch:")
|
|
try:
|
|
flops = paddle.flops(arch, [1, *config["Global"]["image_shape"]])
|
|
except Exception as e:
|
|
logger.warning(
|
|
f"An error occurred when calculating FLOPs and Params of Arch. Please check the Global.image_shape in config. The details of error is: {e}"
|
|
)
|
|
|
|
return arch
|
|
|
|
|
|
def apply_to_static(config, model):
|
|
support_to_static = config['Global'].get('to_static', False)
|
|
|
|
if support_to_static:
|
|
specs = None
|
|
if 'image_shape' in config['Global']:
|
|
specs = [InputSpec([None] + config['Global']['image_shape'])]
|
|
specs[0].stop_gradient = True
|
|
model = to_static(model, input_spec=specs)
|
|
logger.info("Successfully to apply @to_static with specs: {}".format(
|
|
specs))
|
|
return model
|
|
|
|
|
|
class RecModel(TheseusLayer):
|
|
def __init__(self, **config):
|
|
super().__init__()
|
|
backbone_config = config["Backbone"]
|
|
backbone_name = backbone_config.pop("name")
|
|
self.backbone = eval(backbone_name)(**backbone_config)
|
|
if "BackboneStopLayer" in config:
|
|
backbone_stop_layer = config["BackboneStopLayer"]["name"]
|
|
self.backbone.stop_after(backbone_stop_layer)
|
|
|
|
if "Neck" in config:
|
|
self.neck = build_gear(config["Neck"])
|
|
else:
|
|
self.neck = None
|
|
|
|
if "Head" in config:
|
|
self.head = build_gear(config["Head"])
|
|
else:
|
|
self.head = None
|
|
|
|
def forward(self, x, label=None):
|
|
out = dict()
|
|
x = self.backbone(x)
|
|
out["backbone"] = x
|
|
if self.neck is not None:
|
|
x = self.neck(x)
|
|
out["neck"] = x
|
|
out["features"] = x
|
|
if self.head is not None:
|
|
y = self.head(x, label)
|
|
out["logits"] = y
|
|
return out
|
|
|
|
|
|
class DistillationModel(nn.Layer):
|
|
def __init__(self,
|
|
models=None,
|
|
pretrained_list=None,
|
|
freeze_params_list=None,
|
|
**kargs):
|
|
super().__init__()
|
|
assert isinstance(models, list)
|
|
self.model_list = []
|
|
self.model_name_list = []
|
|
if pretrained_list is not None:
|
|
assert len(pretrained_list) == len(models)
|
|
|
|
if freeze_params_list is None:
|
|
freeze_params_list = [False] * len(models)
|
|
assert len(freeze_params_list) == len(models)
|
|
for idx, model_config in enumerate(models):
|
|
assert len(model_config) == 1
|
|
key = list(model_config.keys())[0]
|
|
model_config = model_config[key]
|
|
model_name = model_config.pop("name")
|
|
model = eval(model_name)(**model_config)
|
|
|
|
if freeze_params_list[idx]:
|
|
for param in model.parameters():
|
|
param.trainable = False
|
|
self.model_list.append(self.add_sublayer(key, model))
|
|
self.model_name_list.append(key)
|
|
|
|
if pretrained_list is not None:
|
|
for idx, pretrained in enumerate(pretrained_list):
|
|
if pretrained is not None:
|
|
load_dygraph_pretrain(
|
|
self.model_name_list[idx], path=pretrained)
|
|
|
|
def forward(self, x, label=None):
|
|
result_dict = dict()
|
|
for idx, model_name in enumerate(self.model_name_list):
|
|
if label is None:
|
|
result_dict[model_name] = self.model_list[idx](x)
|
|
else:
|
|
result_dict[model_name] = self.model_list[idx](x, label)
|
|
return result_dict
|
|
|
|
|
|
class AttentionModel(DistillationModel):
|
|
def __init__(self,
|
|
models=None,
|
|
pretrained_list=None,
|
|
freeze_params_list=None,
|
|
**kargs):
|
|
super().__init__(models, pretrained_list, freeze_params_list, **kargs)
|
|
|
|
def forward(self, x, label=None):
|
|
result_dict = dict()
|
|
out = x
|
|
for idx, model_name in enumerate(self.model_name_list):
|
|
if label is None:
|
|
out = self.model_list[idx](out)
|
|
result_dict.update(out)
|
|
else:
|
|
out = self.model_list[idx](out, label)
|
|
result_dict.update(out)
|
|
return result_dict
|