PaddleClas/tools/train.py

106 lines
3.2 KiB
Python

#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import paddle
import paddle.fluid as fluid
import program
from ppcls.data import Reader
import ppcls.utils.environment as env
from ppcls.utils.config import get_config
from ppcls.utils.save_load import init_model, save_model
from ppcls.utils import logger
from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.base import role_maker
def parse_args():
parser = argparse.ArgumentParser("PaddleClas train script")
parser.add_argument(
'-c',
'--config',
type=str,
default='configs/ResNet/ResNet18_vd.yaml',
help='config file path')
parser.add_argument(
'-o',
'--override',
action='append',
default=[],
help='config options to be overridden')
args = parser.parse_args()
return args
def main(args):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
config = get_config(args.config, overrides=args.override, show=True)
place = env.place()
startup_prog = fluid.Program()
train_prog = fluid.Program()
train_dataloader, train_fetchs = program.build(
config, train_prog, startup_prog, is_train=True)
if config.validate:
valid_prog = fluid.Program()
valid_dataloader, valid_fetchs = program.build(
config, valid_prog, startup_prog, is_train=False)
valid_prog = valid_prog.clone(for_test=True)
exe = fluid.Executor(place)
exe.run(startup_prog)
init_model(config, train_prog, exe)
train_reader = Reader(config, 'train')()
train_dataloader.set_sample_list_generator(train_reader, place)
if config.validate:
valid_reader = Reader(config, 'valid')()
valid_dataloader.set_sample_list_generator(valid_reader, place)
compiled_valid_prog = program.compile(config, valid_prog)
compiled_train_prog = fleet.main_program
for epoch_id in range(config.epochs):
program.run(train_dataloader, exe, compiled_train_prog, train_fetchs,
epoch_id, 'train')
if config.validate and epoch_id % config.valid_interval == 0:
program.run(valid_dataloader, exe, compiled_valid_prog,
valid_fetchs, epoch_id, 'valid')
if epoch_id % config.save_interval == 0:
model_path = os.path.join(config.model_save_dir,
config.architecture)
save_model(train_prog, model_path, epoch_id)
if __name__ == '__main__':
args = parse_args()
main(args)