58 lines
2.2 KiB
C#
58 lines
2.2 KiB
C#
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
using System;
|
|
using System.IO;
|
|
using System.Runtime.InteropServices;
|
|
using OpenCvSharp;
|
|
using fastdeploy;
|
|
|
|
namespace Test
|
|
{
|
|
public class TestPaddleClas
|
|
{
|
|
public static void Main(string[] args)
|
|
{
|
|
if (args.Length < 3) {
|
|
Console.WriteLine(
|
|
"Usage: infer_demo path/to/model_dir path/to/image run_option, " +
|
|
"e.g ./infer_model ./ppyolo_dirname ./test.jpeg 0"
|
|
);
|
|
Console.WriteLine( "The data type of run_option is int, 0: run with cpu; 1: run with gpu");
|
|
return;
|
|
}
|
|
string model_dir = args[0];
|
|
string image_path = args[1];
|
|
string model_file = model_dir + "\\" + "inference.pdmodel";
|
|
string params_file = model_dir + "\\" + "inference.pdiparams";
|
|
string config_file = model_dir + "\\" + "inference_cls.yaml";
|
|
RuntimeOption runtimeoption = new RuntimeOption();
|
|
int device_option = Int32.Parse(args[2]);
|
|
if(device_option==0){
|
|
runtimeoption.UseCpu();
|
|
}else{
|
|
runtimeoption.UseGpu();
|
|
}
|
|
fastdeploy.vision.classification.PaddleClasModel model = new fastdeploy.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtimeoption, ModelFormat.PADDLE);
|
|
if(!model.Initialized()){
|
|
Console.WriteLine("Failed to initialize.\n");
|
|
}
|
|
Mat image = Cv2.ImRead(image_path);
|
|
fastdeploy.vision.ClassifyResult res = model.Predict(image);
|
|
Console.WriteLine(res.ToString());
|
|
|
|
}
|
|
|
|
}
|
|
} |