126 lines
3.9 KiB
Python
126 lines
3.9 KiB
Python
import fastdeploy as fd
|
|
import cv2
|
|
import os
|
|
from subprocess import run
|
|
|
|
|
|
def parse_arguments():
|
|
import argparse
|
|
import ast
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--auto",
|
|
required=True,
|
|
help="Auto download, convert, compile and infer if True")
|
|
parser.add_argument("--model", required=True, help="Path of bmodel")
|
|
parser.add_argument(
|
|
"--config_file", required=True, help="Path of config file")
|
|
parser.add_argument(
|
|
"--image", type=str, required=True, help="Path of test image file.")
|
|
parser.add_argument(
|
|
"--topk", type=int, default=1, help="Return topk results.")
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def download():
|
|
cmd_str = 'wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz'
|
|
jpg_str = 'wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg'
|
|
tar_str = 'tar xvf ResNet50_vd_infer.tgz'
|
|
if not os.path.exists('ResNet50_vd_infer.tgz'):
|
|
run(cmd_str, shell=True)
|
|
if not os.path.exists('ILSVRC2012_val_00000010.jpeg'):
|
|
run(jpg_str, shell=True)
|
|
run(tar_str, shell=True)
|
|
|
|
|
|
def paddle2onnx():
|
|
cmd_str = 'paddle2onnx --model_dir ResNet50_vd_infer \
|
|
--model_filename inference.pdmodel \
|
|
--params_filename inference.pdiparams \
|
|
--save_file ResNet50_vd_infer.onnx \
|
|
--enable_dev_version True'
|
|
|
|
print(cmd_str)
|
|
run(cmd_str, shell=True)
|
|
|
|
|
|
def mlir_prepare():
|
|
mlir_path = os.getenv("MODEL_ZOO_PATH")
|
|
mlir_path = mlir_path[:-13]
|
|
cmd_list = [
|
|
'mkdir ResNet50', 'cp -rf ' + os.path.join(
|
|
mlir_path, 'regression/dataset/COCO2017/') + ' ./ResNet50',
|
|
'cp -rf ' + os.path.join(mlir_path,
|
|
'regression/image/') + ' ./ResNet50',
|
|
'cp ResNet50_vd_infer.onnx ./ResNet50/', 'mkdir ./ResNet50/workspace'
|
|
]
|
|
for str in cmd_list:
|
|
print(str)
|
|
run(str, shell=True)
|
|
|
|
|
|
def onnx2mlir():
|
|
cmd_str = 'model_transform.py \
|
|
--model_name ResNet50_vd_infer \
|
|
--model_def ../ResNet50_vd_infer.onnx \
|
|
--input_shapes [[1,3,224,224]] \
|
|
--mean 0.0,0.0,0.0 \
|
|
--scale 0.0039216,0.0039216,0.0039216 \
|
|
--keep_aspect_ratio \
|
|
--pixel_format rgb \
|
|
--output_names save_infer_model/scale_0.tmp_1 \
|
|
--test_input ../image/dog.jpg \
|
|
--test_result ./ResNet50_vd_infer_top_outputs.npz \
|
|
--mlir ./ResNet50_vd_infer.mlir'
|
|
|
|
print(cmd_str)
|
|
os.chdir('./ResNet50/workspace/')
|
|
run(cmd_str, shell=True)
|
|
os.chdir('../../')
|
|
|
|
|
|
def mlir2bmodel():
|
|
cmd_str = 'model_deploy.py \
|
|
--mlir ./ResNet50_vd_infer.mlir \
|
|
--quantize F32 \
|
|
--chip bm1684x \
|
|
--test_input ./ResNet50_vd_infer_in_f32.npz \
|
|
--test_reference ./ResNet50_vd_infer_top_outputs.npz \
|
|
--model ./ResNet50_vd_infer_1684x_f32.bmodel'
|
|
|
|
print(cmd_str)
|
|
os.chdir('./ResNet50/workspace')
|
|
run(cmd_str, shell=True)
|
|
os.chdir('../../')
|
|
|
|
|
|
args = parse_arguments()
|
|
|
|
if (args.auto):
|
|
download()
|
|
paddle2onnx()
|
|
mlir_prepare()
|
|
onnx2mlir()
|
|
mlir2bmodel()
|
|
|
|
# config runtime and load the model
|
|
runtime_option = fd.RuntimeOption()
|
|
runtime_option.use_sophgo()
|
|
|
|
model_file = './ResNet50/workspace/ResNet50_vd_infer_1684x_f32.bmodel' if args.auto else args.model
|
|
params_file = ""
|
|
config_file = './ResNet50_vd_infer/inference_cls.yaml' if args.auto else args.config_file
|
|
image_file = './ILSVRC2012_val_00000010.jpeg' if args.auto else args.image
|
|
model = fd.vision.classification.PaddleClasModel(
|
|
model_file,
|
|
params_file,
|
|
config_file,
|
|
runtime_option=runtime_option,
|
|
model_format=fd.ModelFormat.SOPHGO)
|
|
|
|
# predict the results of image classification
|
|
im = cv2.imread(image_file)
|
|
result = model.predict(im, args.topk)
|
|
print(result)
|