PaddleClas/deploy/fastdeploy/sophgo/python/infer.py

126 lines
3.9 KiB
Python

import fastdeploy as fd
import cv2
import os
from subprocess import run
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--auto",
required=True,
help="Auto download, convert, compile and infer if True")
parser.add_argument("--model", required=True, help="Path of bmodel")
parser.add_argument(
"--config_file", required=True, help="Path of config file")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--topk", type=int, default=1, help="Return topk results.")
return parser.parse_args()
def download():
cmd_str = 'wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz'
jpg_str = 'wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg'
tar_str = 'tar xvf ResNet50_vd_infer.tgz'
if not os.path.exists('ResNet50_vd_infer.tgz'):
run(cmd_str, shell=True)
if not os.path.exists('ILSVRC2012_val_00000010.jpeg'):
run(jpg_str, shell=True)
run(tar_str, shell=True)
def paddle2onnx():
cmd_str = 'paddle2onnx --model_dir ResNet50_vd_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ResNet50_vd_infer.onnx \
--enable_dev_version True'
print(cmd_str)
run(cmd_str, shell=True)
def mlir_prepare():
mlir_path = os.getenv("MODEL_ZOO_PATH")
mlir_path = mlir_path[:-13]
cmd_list = [
'mkdir ResNet50', 'cp -rf ' + os.path.join(
mlir_path, 'regression/dataset/COCO2017/') + ' ./ResNet50',
'cp -rf ' + os.path.join(mlir_path,
'regression/image/') + ' ./ResNet50',
'cp ResNet50_vd_infer.onnx ./ResNet50/', 'mkdir ./ResNet50/workspace'
]
for str in cmd_list:
print(str)
run(str, shell=True)
def onnx2mlir():
cmd_str = 'model_transform.py \
--model_name ResNet50_vd_infer \
--model_def ../ResNet50_vd_infer.onnx \
--input_shapes [[1,3,224,224]] \
--mean 0.0,0.0,0.0 \
--scale 0.0039216,0.0039216,0.0039216 \
--keep_aspect_ratio \
--pixel_format rgb \
--output_names save_infer_model/scale_0.tmp_1 \
--test_input ../image/dog.jpg \
--test_result ./ResNet50_vd_infer_top_outputs.npz \
--mlir ./ResNet50_vd_infer.mlir'
print(cmd_str)
os.chdir('./ResNet50/workspace/')
run(cmd_str, shell=True)
os.chdir('../../')
def mlir2bmodel():
cmd_str = 'model_deploy.py \
--mlir ./ResNet50_vd_infer.mlir \
--quantize F32 \
--chip bm1684x \
--test_input ./ResNet50_vd_infer_in_f32.npz \
--test_reference ./ResNet50_vd_infer_top_outputs.npz \
--model ./ResNet50_vd_infer_1684x_f32.bmodel'
print(cmd_str)
os.chdir('./ResNet50/workspace')
run(cmd_str, shell=True)
os.chdir('../../')
args = parse_arguments()
if (args.auto):
download()
paddle2onnx()
mlir_prepare()
onnx2mlir()
mlir2bmodel()
# config runtime and load the model
runtime_option = fd.RuntimeOption()
runtime_option.use_sophgo()
model_file = './ResNet50/workspace/ResNet50_vd_infer_1684x_f32.bmodel' if args.auto else args.model
params_file = ""
config_file = './ResNet50_vd_infer/inference_cls.yaml' if args.auto else args.config_file
image_file = './ILSVRC2012_val_00000010.jpeg' if args.auto else args.image
model = fd.vision.classification.PaddleClasModel(
model_file,
params_file,
config_file,
runtime_option=runtime_option,
model_format=fd.ModelFormat.SOPHGO)
# predict the results of image classification
im = cv2.imread(image_file)
result = model.predict(im, args.topk)
print(result)