166 lines
5.1 KiB
Python
166 lines
5.1 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import sys
|
|
|
|
import paddle
|
|
import paddle.regularizer as regularizer
|
|
|
|
__all__ = ['OptimizerBuilder']
|
|
|
|
|
|
class L1Decay(object):
|
|
"""
|
|
L1 Weight Decay Regularization, which encourages the weights to be sparse.
|
|
|
|
Args:
|
|
factor(float): regularization coeff. Default:0.0.
|
|
"""
|
|
|
|
def __init__(self, factor=0.0):
|
|
super(L1Decay, self).__init__()
|
|
self.factor = factor
|
|
|
|
def __call__(self):
|
|
reg = regularizer.L1Decay(self.factor)
|
|
return reg
|
|
|
|
|
|
class L2Decay(object):
|
|
"""
|
|
L2 Weight Decay Regularization, which encourages the weights to be sparse.
|
|
|
|
Args:
|
|
factor(float): regularization coeff. Default:0.0.
|
|
"""
|
|
|
|
def __init__(self, factor=0.0):
|
|
super(L2Decay, self).__init__()
|
|
self.factor = factor
|
|
|
|
def __call__(self):
|
|
reg = regularizer.L2Decay(self.factor)
|
|
return reg
|
|
|
|
|
|
class Momentum(object):
|
|
"""
|
|
Simple Momentum optimizer with velocity state.
|
|
|
|
Args:
|
|
learning_rate (float|Variable) - The learning rate used to update parameters.
|
|
Can be a float value or a Variable with one float value as data element.
|
|
momentum (float) - Momentum factor.
|
|
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
|
|
"""
|
|
|
|
def __init__(self,
|
|
learning_rate,
|
|
momentum,
|
|
parameter_list=None,
|
|
regularization=None,
|
|
multi_precision=False,
|
|
**args):
|
|
super(Momentum, self).__init__()
|
|
self.learning_rate = learning_rate
|
|
self.momentum = momentum
|
|
self.parameter_list = parameter_list
|
|
self.regularization = regularization
|
|
self.multi_precision = multi_precision
|
|
|
|
def __call__(self):
|
|
opt = paddle.optimizer.Momentum(
|
|
learning_rate=self.learning_rate,
|
|
momentum=self.momentum,
|
|
parameters=self.parameter_list,
|
|
weight_decay=self.regularization,
|
|
multi_precision=self.multi_precision)
|
|
return opt
|
|
|
|
|
|
class RMSProp(object):
|
|
"""
|
|
Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
|
|
|
|
Args:
|
|
learning_rate (float|Variable) - The learning rate used to update parameters.
|
|
Can be a float value or a Variable with one float value as data element.
|
|
momentum (float) - Momentum factor.
|
|
rho (float) - rho value in equation.
|
|
epsilon (float) - avoid division by zero, default is 1e-6.
|
|
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
|
|
"""
|
|
|
|
def __init__(self,
|
|
learning_rate,
|
|
momentum,
|
|
rho=0.95,
|
|
epsilon=1e-6,
|
|
parameter_list=None,
|
|
regularization=None,
|
|
**args):
|
|
super(RMSProp, self).__init__()
|
|
self.learning_rate = learning_rate
|
|
self.momentum = momentum
|
|
self.rho = rho
|
|
self.epsilon = epsilon
|
|
self.parameter_list = parameter_list
|
|
self.regularization = regularization
|
|
|
|
def __call__(self):
|
|
opt = paddle.optimizer.RMSProp(
|
|
learning_rate=self.learning_rate,
|
|
momentum=self.momentum,
|
|
rho=self.rho,
|
|
epsilon=self.epsilon,
|
|
parameters=self.parameter_list,
|
|
weight_decay=self.regularization)
|
|
return opt
|
|
|
|
|
|
class OptimizerBuilder(object):
|
|
"""
|
|
Build optimizer
|
|
|
|
Args:
|
|
function(str): optimizer name of learning rate
|
|
params(dict): parameters used for init the class
|
|
regularizer (dict): parameters used for create regularization
|
|
"""
|
|
|
|
def __init__(self,
|
|
function='Momentum',
|
|
params={'momentum': 0.9},
|
|
regularizer=None):
|
|
self.function = function
|
|
self.params = params
|
|
# create regularizer
|
|
if regularizer is not None:
|
|
mod = sys.modules[__name__]
|
|
reg_func = regularizer['function'] + 'Decay'
|
|
del regularizer['function']
|
|
reg = getattr(mod, reg_func)(**regularizer)()
|
|
self.params['regularization'] = reg
|
|
|
|
def __call__(self, learning_rate, parameter_list=None):
|
|
mod = sys.modules[__name__]
|
|
opt = getattr(mod, self.function)
|
|
return opt(learning_rate=learning_rate,
|
|
parameter_list=parameter_list,
|
|
**self.params)()
|