mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
138 lines
4.7 KiB
C++
138 lines
4.7 KiB
C++
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "opencv2/core.hpp"
|
|
#include "opencv2/imgcodecs.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
#include <chrono>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <opencv2/core/utils/filesystem.hpp>
|
|
#include <ostream>
|
|
#include <vector>
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <numeric>
|
|
|
|
#include <auto_log/autolog.h>
|
|
#include <gflags/gflags.h>
|
|
#include <include/cls.h>
|
|
#include <include/cls_config.h>
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace PaddleClas;
|
|
|
|
DEFINE_string(config,
|
|
"", "Path of yaml file");
|
|
DEFINE_string(c,
|
|
"", "Path of yaml file");
|
|
|
|
int main(int argc, char **argv) {
|
|
google::ParseCommandLineFlags(&argc, &argv, true);
|
|
std::string yaml_path = "";
|
|
if (FLAGS_config == "" && FLAGS_c == "") {
|
|
std::cerr << "[ERROR] usage: " << std::endl
|
|
<< argv[0] << " -c $yaml_path" << std::endl
|
|
<< "or:" << std::endl
|
|
<< argv[0] << " -config $yaml_path" << std::endl;
|
|
exit(1);
|
|
} else if (FLAGS_config != "") {
|
|
yaml_path = FLAGS_config;
|
|
} else {
|
|
yaml_path = FLAGS_c;
|
|
}
|
|
ClsConfig config(yaml_path);
|
|
config.PrintConfigInfo();
|
|
|
|
std::string path(config.infer_imgs);
|
|
|
|
std::vector <std::string> img_files_list;
|
|
if (cv::utils::fs::isDirectory(path)) {
|
|
std::vector <cv::String> filenames;
|
|
cv::glob(path, filenames);
|
|
for (auto f : filenames) {
|
|
img_files_list.push_back(f);
|
|
}
|
|
} else {
|
|
img_files_list.push_back(path);
|
|
}
|
|
|
|
std::cout << "img_file_list length: " << img_files_list.size() << std::endl;
|
|
|
|
Classifier classifier(config);
|
|
|
|
std::vector<double> cls_times = {0, 0, 0};
|
|
std::vector<double> cls_times_total = {0, 0, 0};
|
|
double infer_time;
|
|
std::vector<float> out_data;
|
|
std::vector<int> result_index;
|
|
int warmup_iter = 5;
|
|
bool label_output_equal_flag = true;
|
|
for (int idx = 0; idx < img_files_list.size(); ++idx) {
|
|
std::string img_path = img_files_list[idx];
|
|
cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
|
|
if (!srcimg.data) {
|
|
std::cerr << "[ERROR] image read failed! image path: " << img_path
|
|
<< "\n";
|
|
exit(-1);
|
|
}
|
|
|
|
cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB);
|
|
classifier.Run(srcimg, out_data, result_index, cls_times);
|
|
if (label_output_equal_flag and out_data.size() != config.id_map.size()) {
|
|
std::cout << "Warning: the label size is not equal to output size!"
|
|
<< std::endl;
|
|
label_output_equal_flag = false;
|
|
}
|
|
|
|
int max_len = std::min(config.topk, int(out_data.size()));
|
|
std::cout << "Current image path: " << img_path << std::endl;
|
|
infer_time = cls_times[0] + cls_times[1] + cls_times[2];
|
|
std::cout << "Current total inferen time cost: " << infer_time << " ms."
|
|
<< std::endl;
|
|
for (int i = 0; i < max_len; ++i) {
|
|
printf("\tTop%d: class_id: %d, score: %.4f, ", i + 1, result_index[i],
|
|
out_data[result_index[i]]);
|
|
if (label_output_equal_flag)
|
|
printf("label: %s\n", config.id_map[result_index[i]].c_str());
|
|
}
|
|
if (idx >= warmup_iter) {
|
|
for (int i = 0; i < cls_times.size(); ++i)
|
|
cls_times_total[i] += cls_times[i];
|
|
}
|
|
}
|
|
if (img_files_list.size() > warmup_iter) {
|
|
|
|
infer_time = cls_times_total[0] + cls_times_total[1] + cls_times_total[2];
|
|
std::cout << "average time cost in all: "
|
|
<< infer_time / (img_files_list.size() - warmup_iter) << " ms."
|
|
<< std::endl;
|
|
}
|
|
|
|
std::string presion = "fp32";
|
|
if (config.use_fp16)
|
|
presion = "fp16";
|
|
if (config.benchmark) {
|
|
AutoLogger autolog("Classification", config.use_gpu, config.use_tensorrt,
|
|
config.use_mkldnn, config.cpu_threads, 1,
|
|
"1, 3, 224, 224", presion, cls_times_total,
|
|
img_files_list.size());
|
|
autolog.report();
|
|
}
|
|
return 0;
|
|
}
|