PaddleClas/docs/zh_cn/models/DPN_DenseNet.md
2020-04-10 00:45:02 +08:00

58 lines
3.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# DPN与DenseNet系列
## 概述
![](../../images/models/DPN.png)
所有模型在预测时图像的crop_size设置为224resize_short_size设置为256。
更多的模型概述正在持续更新中。
## 精度、FLOPS和参数量
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| DenseNet121 | 0.757 | 0.926 | 0.750 | | 5.690 | 7.980 |
| DenseNet161 | 0.786 | 0.941 | 0.778 | | 15.490 | 28.680 |
| DenseNet169 | 0.768 | 0.933 | 0.764 | | 6.740 | 14.150 |
| DenseNet201 | 0.776 | 0.937 | 0.775 | | 8.610 | 20.010 |
| DenseNet264 | 0.780 | 0.939 | 0.779 | | 11.540 | 33.370 |
| DPN68 | 0.768 | 0.934 | 0.764 | 0.931 | 4.030 | 10.780 |
| DPN92 | 0.799 | 0.948 | 0.793 | 0.946 | 12.540 | 36.290 |
| DPN98 | 0.806 | 0.951 | 0.799 | 0.949 | 22.220 | 58.460 |
| DPN107 | 0.809 | 0.953 | 0.802 | 0.951 | 35.060 | 82.970 |
| DPN131 | 0.807 | 0.951 | 0.801 | 0.949 | 30.510 | 75.360 |
## FP16预测速度
| Models | batch_size=1<br>(ms) | batch_size=4<br>(ms) | batch_size=8<br>(ms) | batch_size=32<br>(ms) |
|:--:|:--:|:--:|:--:|:--:|
| DenseNet121 | 3.653 | 4.560 | 5.574 | 11.517 |
| DenseNet161 | 7.826 | 8.936 | 10.970 | 22.554 |
| DenseNet169 | 5.625 | 6.698 | 7.876 | 14.983 |
| DenseNet201 | 7.243 | 8.537 | 10.111 | 18.928 |
| DenseNet264 | 10.882 | 12.539 | 14.645 | 26.455 |
| DPN68 | 10.310 | 11.060 | 14.299 | 29.618 |
| DPN92 | 16.335 | 17.373 | 23.197 | 45.210 |
| DPN98 | 18.975 | 23.073 | 28.902 | 66.280 |
| DPN107 | 24.932 | 28.607 | 37.513 | 89.112 |
| DPN131 | 25.425 | 29.874 | 37.355 | 88.583 |
## FP32预测速度
| Models | batch_size=1<br>(ms) | batch_size=4<br>(ms) | batch_size=8<br>(ms) | batch_size=32<br>(ms) |
|:--:|:--:|:--:|:--:|:--:|
| DenseNet121 | 3.732 | 6.614 | 8.517 | 21.755 |
| DenseNet161 | 8.282 | 14.438 | 19.336 | 51.953 |
| DenseNet169 | 5.705 | 10.074 | 12.432 | 28.756 |
| DenseNet201 | 7.315 | 13.830 | 16.941 | 38.654 |
| DenseNet264 | 10.986 | 21.460 | 25.724 | 56.501 |
| DPN68 | 10.357 | 11.025 | 14.903 | 34.380 |
| DPN92 | 16.067 | 21.315 | 26.176 | 62.126 |
| DPN98 | 18.455 | 26.710 | 36.009 | 104.084 |
| DPN107 | 24.164 | 37.691 | 51.307 | 148.041 |
| DPN131 | 24.761 | 35.806 | 48.401 | 133.233 |