159 lines
4.9 KiB
C++
159 lines
4.9 KiB
C++
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <glog/logging.h>
|
|
#include <yaml-cpp/yaml.h>
|
|
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <opencv2/core/core.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
|
|
namespace Detection {
|
|
|
|
// Object for storing all preprocessed data
|
|
class ImageBlob {
|
|
public:
|
|
// image width and height
|
|
std::vector<float> im_shape_;
|
|
// Buffer for image data after preprocessing
|
|
std::vector<float> im_data_;
|
|
// in net data shape(after pad)
|
|
std::vector<float> in_net_shape_;
|
|
// Evaluation image width and height
|
|
// std::vector<float> eval_im_size_f_;
|
|
// Scale factor for image size to origin image size
|
|
std::vector<float> scale_factor_;
|
|
};
|
|
|
|
// Abstraction of preprocessing opration class
|
|
class PreprocessOp {
|
|
public:
|
|
virtual void Init(const YAML::Node &item) = 0;
|
|
|
|
virtual void Run(cv::Mat *im, ImageBlob *data) = 0;
|
|
};
|
|
|
|
class InitInfo : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const YAML::Node &item) {}
|
|
|
|
virtual void Run(cv::Mat *im, ImageBlob *data);
|
|
};
|
|
|
|
class NormalizeImage : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const YAML::Node &item) {
|
|
mean_ = item["mean"].as < std::vector < float >> ();
|
|
scale_ = item["std"].as < std::vector < float >> ();
|
|
is_scale_ = item["is_scale"].as<bool>();
|
|
}
|
|
|
|
virtual void Run(cv::Mat *im, ImageBlob *data);
|
|
|
|
private:
|
|
// CHW or HWC
|
|
std::vector<float> mean_;
|
|
std::vector<float> scale_;
|
|
bool is_scale_;
|
|
};
|
|
|
|
class Permute : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const YAML::Node &item) {}
|
|
|
|
virtual void Run(cv::Mat *im, ImageBlob *data);
|
|
};
|
|
|
|
class Resize : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const YAML::Node &item) {
|
|
interp_ = item["interp"].as<int>();
|
|
// max_size_ = item["target_size"].as<int>();
|
|
keep_ratio_ = item["keep_ratio"].as<bool>();
|
|
target_size_ = item["target_size"].as < std::vector < int >> ();
|
|
}
|
|
|
|
// Compute best resize scale for x-dimension, y-dimension
|
|
std::pair<double, double> GenerateScale(const cv::Mat &im);
|
|
|
|
virtual void Run(cv::Mat *im, ImageBlob *data);
|
|
|
|
private:
|
|
int interp_ = 2;
|
|
bool keep_ratio_;
|
|
std::vector<int> target_size_;
|
|
std::vector<int> in_net_shape_;
|
|
};
|
|
|
|
// Models with FPN need input shape % stride == 0
|
|
class PadStride : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const YAML::Node &item) {
|
|
stride_ = item["stride"].as<int>();
|
|
}
|
|
|
|
virtual void Run(cv::Mat *im, ImageBlob *data);
|
|
|
|
private:
|
|
int stride_;
|
|
};
|
|
|
|
class Preprocessor {
|
|
public:
|
|
void Init(const YAML::Node &config_node) {
|
|
// initialize image info at first
|
|
ops_["InitInfo"] = std::make_shared<InitInfo>();
|
|
for (int i = 0; i < config_node.size(); ++i) {
|
|
if (config_node[i]["DetResize"].IsDefined()) {
|
|
ops_["Resize"] = std::make_shared<Resize>();
|
|
ops_["Resize"]->Init(config_node[i]["DetResize"]);
|
|
}
|
|
|
|
if (config_node[i]["DetNormalizeImage"].IsDefined()) {
|
|
ops_["NormalizeImage"] = std::make_shared<NormalizeImage>();
|
|
ops_["NormalizeImage"]->Init(config_node[i]["DetNormalizeImage"]);
|
|
}
|
|
|
|
if (config_node[i]["DetPermute"].IsDefined()) {
|
|
ops_["Permute"] = std::make_shared<Permute>();
|
|
ops_["Permute"]->Init(config_node[i]["DetPermute"]);
|
|
}
|
|
|
|
if (config_node[i]["DetPadStrid"].IsDefined()) {
|
|
ops_["PadStride"] = std::make_shared<PadStride>();
|
|
ops_["PadStride"]->Init(config_node[i]["DetPadStrid"]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Run(cv::Mat *im, ImageBlob *data);
|
|
|
|
public:
|
|
static const std::vector <std::string> RUN_ORDER;
|
|
|
|
private:
|
|
std::unordered_map <std::string, std::shared_ptr<PreprocessOp>> ops_;
|
|
};
|
|
|
|
} // namespace Detection
|