3.7 KiB
3.7 KiB
SwinTransformer
目录
1. 概述
Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算机视觉领域的通用骨干网路。SwinTransformer 由移动窗口(shifted windows)表示的层次 Transformer 结构组成。移动窗口将自注意计算限制在非重叠的局部窗口上,同时允许跨窗口连接,从而提高了网络性能。论文地址。
2. 精度、FLOPS 和参数量
Models | Top1 | Top5 | Reference top1 |
Reference top5 |
FLOPS (G) |
Params (M) |
---|---|---|---|---|---|---|
SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | 0.812 | 0.955 | 4.5 | 28 |
SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | 0.832 | 0.962 | 8.7 | 50 |
SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 | 0.835 | 0.965 | 15.4 | 88 |
SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | 0.845 | 0.970 | 47.1 | 88 |
SwinTransformer_base_patch4_window7_224[1] | 0.8487 | 0.9746 | 0.852 | 0.975 | 15.4 | 88 |
SwinTransformer_base_patch4_window12_384[1] | 0.8642 | 0.9807 | 0.864 | 0.980 | 47.1 | 88 |
SwinTransformer_large_patch4_window7_224[1] | 0.8596 | 0.9783 | 0.863 | 0.979 | 34.5 | 197 |
SwinTransformer_large_patch4_window12_384[1] | 0.8719 | 0.9823 | 0.873 | 0.982 | 103.9 | 197 |
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
注:与 Reference 的精度差异源于数据预处理不同。
3. 基于 V100 GPU 的预测速度
Models | Crop Size | Resize Short Size | FP32 Batch Size=1 (ms) |
FP32 Batch Size=4 (ms) |
FP32 Batch Size=8 (ms) |
---|---|---|---|---|---|
SwinTransformer_tiny_patch4_window7_224 | 224 | 256 | 6.59 | 9.68 | 16.32 |
SwinTransformer_small_patch4_window7_224 | 224 | 256 | 12.54 | 17.07 | 28.08 |
SwinTransformer_base_patch4_window7_224 | 224 | 256 | 13.37 | 23.53 | 39.11 |
SwinTransformer_base_patch4_window12_384 | 384 | 384 | 19.52 | 64.56 | 123.30 |
SwinTransformer_base_patch4_window7_224[1] | 224 | 256 | 13.53 | 23.46 | 39.13 |
SwinTransformer_base_patch4_window12_384[1] | 384 | 384 | 19.65 | 64.72 | 123.42 |
SwinTransformer_large_patch4_window7_224[1] | 224 | 256 | 15.74 | 38.57 | 71.49 |
SwinTransformer_large_patch4_window12_384[1] | 384 | 384 | 32.61 | 116.59 | 223.23 |
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。