PaddleClas/ppcls/engine/train/train_fixmatch_ccssl.py
2023-01-04 13:42:00 +08:00

194 lines
7.8 KiB
Python

from __future__ import absolute_import, division, print_function
import time
from turtle import update
import paddle
from ppcls.engine.train.train_fixmatch import get_loss
from ppcls.engine.train.utils import update_loss, update_metric, log_info
from ppcls.utils import profiler
from paddle.nn import functional as F
import numpy as np
# from reprod_log import ReprodLogger
def train_epoch_fixmatch_ccssl(engine, epoch_id, print_batch_step):
##############################################################
# out_logger = ReprodLogger()
# loss_logger = ReprodLogger()
# epoch = 0
##############################################################
tic = time.time()
if not hasattr(engine, 'train_dataloader_iter'):
engine.train_dataloader_iter = iter(engine.train_dataloader)
engine.unlabel_train_dataloader_iter = iter(engine.unlabel_train_dataloader)
temperture = engine.config['SSL'].get("T", 1)
threshold = engine.config['SSL'].get("threshold", 0.95)
assert engine.iter_per_epoch is not None, "Global.iter_per_epoch need to be set"
threshold = paddle.to_tensor(threshold)
# dataload_logger = ReprodLogger()
for iter_id in range(engine.iter_per_epoch):
if iter_id >= engine.iter_per_epoch:
break
if iter_id == 5:
for key in engine.time_info:
engine.time_info[key].reset()
try:
label_data_batch = engine.train_dataloader_iter.next()
except Exception:
engine.train_dataloader_iter = iter(engine.train_dataloader)
label_data_batch = engine.train_dataloader_iter.next()
try:
unlabel_data_batch = engine.unlabel_train_dataloader_iter.next()
except Exception:
engine.unlabel_train_dataloader_iter = iter(engine.unlabel_train_dataloader)
unlabel_data_batch = engine.unlabel_train_dataloader_iter.next()
assert len(unlabel_data_batch) == 3
assert unlabel_data_batch[0].shape == unlabel_data_batch[1].shape == unlabel_data_batch[2].shape
##############################################################
# inputs_x, target_x = label_data_batch
# inputs_w, inputs_s1, inputs_s2 = unlabel_data_batch
# dataload_logger.add(f"inputs_x_iter_{iter_id}", inputs_x.detach().numpy())
# dataload_logger.add(f"target_x_iter_{iter_id}", target_x.detach().numpy())
# dataload_logger.add(f"inputs_w_iter_{iter_id}", inputs_w.detach().numpy())
# dataload_logger.add(f"inputs_s1_iter_{iter_id}", inputs_s1.detach().numpy())
# dataload_logger.add(f"inputs_s2_iter_{iter_id}", inputs_s2.detach().numpy())
# dataload_logger.save('../align/step2/data/paddle.npy')
# assert 1==0
##############################################################
engine.time_info['reader_cost'].update(time.time() - tic)
batch_size = label_data_batch[0].shape[0] \
+ unlabel_data_batch[0].shape[0] \
+ unlabel_data_batch[1].shape[0] \
+ unlabel_data_batch[2].shape[0]
engine.global_step += 1
# make inputs
inputs_x, targets_x = label_data_batch
# inputs_x = inputs_x[0]
inputs_w, inputs_s1, inputs_s2 = unlabel_data_batch
batch_size_label = inputs_x.shape[0]
inputs = paddle.concat([inputs_x, inputs_w, inputs_s1, inputs_s2])
loss_dict, logits_label = get_loss(engine, inputs, batch_size_label,
temperture, threshold, targets_x,
# epoch=epoch,
# batch_idx=iter_id,
# out_logger=out_logger,
# loss_logger=loss_logger
)
loss = loss_dict['loss']
loss.backward()
for i in range(len(engine.optimizer)):
engine.optimizer[i].step()
for i in range(len(engine.lr_sch)):
if not getattr(engine.lr_sch[i], 'by_epoch', False):
engine.lr_sch[i].step()
for i in range(len(engine.optimizer)):
engine.optimizer[i].clear_grad()
if engine.ema:
engine.model_ema.update(engine.model)
update_metric(engine, logits_label, label_data_batch, batch_size)
update_loss(engine, loss_dict, batch_size)
engine.time_info['batch_cost'].update(time.time() - tic)
if iter_id % print_batch_step == 0:
log_info(engine, batch_size, epoch_id, iter_id)
tic = time.time()
# if iter_id == 10:
# assert 1==0
for i in range(len(engine.lr_sch)):
if getattr(engine.lr_sch[i], 'by_epoch', False):
engine.lr_sch[i].step()
def get_loss(engine,
inputs,
batch_size_label,
temperture,
threshold,
targets_x,
**kwargs
):
logits, feats = engine.model(inputs)
feat_w, feat_s1, feat_s2 = feats[batch_size_label:].chunk(3)
feat_x = feats[:batch_size_label]
logits_x = logits[:batch_size_label]
logits_w, logits_s1, logits_s2 = logits[batch_size_label:].chunk(3)
loss_dict_label = engine.train_loss_func(logits_x, targets_x)
probs_u_w = F.softmax(logits_w.detach() / temperture, axis=-1)
max_probs, p_targets_u_w = probs_u_w.max(axis=-1), probs_u_w.argmax(axis=-1)
mask = paddle.greater_equal(max_probs, threshold).astype('float')
# feats = paddle.concat([logits_s1.unsqueeze(1), logits_s2.unsqueeze(1)], axis=1)
feats = paddle.concat([feat_s1.unsqueeze(1), feat_s2.unsqueeze(1)], axis=1)
batch = {'logits_w': logits_w,
'logits_s1': logits_s1,
'p_targets_u_w': p_targets_u_w,
'mask': mask,
'max_probs': max_probs,
}
unlabel_loss = engine.unlabel_train_loss_func(feats, batch)
loss_dict = {}
for k, v in loss_dict_label.items():
if k != 'loss':
loss_dict[k] = v
for k, v in unlabel_loss.items():
if k != 'loss':
loss_dict[k] = v
loss_dict['loss'] = loss_dict_label['loss'] + unlabel_loss['loss']
##############################################################
# print(loss_dict)
# epoch = kwargs['epoch']
# batch_idx = kwargs['batch_idx']
# out_logger = kwargs['out_logger']
# loss_logger = kwargs['loss_logger']
# out_logger.add(f'logit_x_{epoch}_{batch_idx}', logits_x.detach().numpy())
# out_logger.add(f'logit_u_w_{epoch}_{batch_idx}', logits_w.detach().numpy())
# out_logger.add(f'logit_u_s1_{epoch}_{batch_idx}', logits_s1.detach().numpy())
# out_logger.add(f'logit_u_s2_{epoch}_{batch_idx}', logits_s2.detach().numpy())
# out_logger.add(f'feat_x_{epoch}_{batch_idx}', feat_x.detach().numpy())
# out_logger.add(f'feat_w_{epoch}_{batch_idx}', feat_w.detach().numpy())
# out_logger.add(f'feat_s1_{epoch}_{batch_idx}', feat_s1.detach().numpy())
# out_logger.add(f'feat_s2_{epoch}_{batch_idx}', feat_s2.detach().numpy())
# loss_logger.add(f'loss_{epoch}_{batch_idx}', loss_dict['loss'].detach().numpy())
# loss_logger.add(f'loss_x_{epoch}_{batch_idx}', loss_dict['CELoss'].detach().cpu().numpy())
# loss_logger.add(f'loss_u_{epoch}_{batch_idx}', loss_dict['CCSSLCeLoss'].detach().cpu().numpy())
# loss_logger.add(f'loss_c_{epoch}_{batch_idx}', loss_dict['SoftSupConLoss'].detach().cpu().numpy())
# loss_logger.add(f'mask_prob_{epoch}_{batch_idx}', mask.mean().detach().numpy())
# out_logger.save('../align/step3/data/paddle_out.npy')
# loss_logger.save('../align/step3/data/paddle_loss.npy')
##############################################################
# assert 1==0
return loss_dict, logits_x